- -

Mining News Data for the Measurement and Prediction of Inflation Expectations

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Mining News Data for the Measurement and Prediction of Inflation Expectations

Show full item record

Gabrielyan, D.; Masso, J.; Uusküla, L. (2020). Mining News Data for the Measurement and Prediction of Inflation Expectations. Editorial Universitat Politècnica de València. 2-4. https://doi.org/10.4995/CARMA2020.2020.11322

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/148762

Files in this item

Item Metadata

Title: Mining News Data for the Measurement and Prediction of Inflation Expectations
Author: Gabrielyan, Diana Masso, Jaan Uusküla, Lenno
Issued date:
Abstract:
[EN] In this paper we use high frequency multidimensional textual news data and propose an index of inflation news. We utilize the power of text mining and its ability to convert large collections of text from unstructured ...[+]
Subjects: Web data , Internet data , Big data , Qca , Pls , Sem , Conference , Inflation , Inflation expectations , Natural language processing , News data , Topic modelling
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
ISBN: 9788490488324
DOI: 10.4995/CARMA2020.2020.11322
Publisher:
Editorial Universitat Politècnica de València
Publisher version: http://ocs.editorial.upv.es/index.php/CARMA/CARMA2020/paper/view/11322
Conference name: CARMA 2020 - 3rd International Conference on Advanced Research Methods and Analytics
Conference place: Valencia, Spain
Conference date: Julio 08-09,2020
Type: Capítulo de libro Comunicación en congreso

recommendations

 

This item appears in the following Collection(s)

Show full item record