- -

An algorithm to fit conditional tail expectation regression models for vehicle excess speed in driving data

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

An algorithm to fit conditional tail expectation regression models for vehicle excess speed in driving data

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pitarque, Albert es_ES
dc.contributor.author Guillen, Montserrat es_ES
dc.date.accessioned 2020-07-28T09:52:13Z
dc.date.available 2020-07-28T09:52:13Z
dc.date.issued 2020-05-19
dc.identifier.isbn 9788490488324
dc.identifier.uri http://hdl.handle.net/10251/148773
dc.description.abstract [EN] An algorithm to fit regression models aimed at predicted the average responses beyond a conditional quantile level is presented. This procedure is implemented in a case study of insured drivers covering almost 10,000. The aim is to predict the expected yearly distance driven above the posted speed limits as a function of driving patterns such as total distance, urban and night percent driven. Gender and age are also controlled. Results are analyzed for the median and the top decile. The conclusions provide evidence of factors influencing speed limit violations for risky drivers and they are interesting to price motor insurance and implement road safety policies. The efficiency of the algorithm to fit tail expectation regression is compared to quantile regression. Computational time doubles for tail expectation regression compared to quantile regression. Standard errors are estimated via bootstrap methods. Further considerations regarding in-sample predictive performance are discussed. In particular, further restrictions should be imposed in the model specification to avoid prediction outside the plausible range es_ES
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Web data es_ES
dc.subject Internet data es_ES
dc.subject Big data es_ES
dc.subject Qca es_ES
dc.subject Pls es_ES
dc.subject Sem es_ES
dc.subject Conference es_ES
dc.subject Telematics es_ES
dc.subject Quantile regression es_ES
dc.subject Insurance es_ES
dc.subject Tail value-at-risk es_ES
dc.subject Traffic safety es_ES
dc.title An algorithm to fit conditional tail expectation regression models for vehicle excess speed in driving data es_ES
dc.type Capítulo de libro es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.4995/CARMA2020.2020.11512
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Pitarque, A.; Guillen, M. (2020). An algorithm to fit conditional tail expectation regression models for vehicle excess speed in driving data. Editorial Universitat Politècnica de València. 51-58. https://doi.org/10.4995/CARMA2020.2020.11512 es_ES
dc.description.accrualMethod OCS es_ES
dc.relation.conferencename CARMA 2020 - 3rd International Conference on Advanced Research Methods and Analytics es_ES
dc.relation.conferencedate Julio 08-09,2020 es_ES
dc.relation.conferenceplace Valencia, Spain es_ES
dc.relation.publisherversion http://ocs.editorial.upv.es/index.php/CARMA/CARMA2020/paper/view/11512 es_ES
dc.description.upvformatpinicio 51 es_ES
dc.description.upvformatpfin 58 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela OCS\11512 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem