- -

Enhancing UX of analytics products with AI technology

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Enhancing UX of analytics products with AI technology

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mirchev, Christo es_ES
dc.contributor.author Metz, Jean es_ES
dc.contributor.author Herrmann, Markus es_ES
dc.date.accessioned 2020-07-28T11:12:18Z
dc.date.available 2020-07-28T11:12:18Z
dc.date.issued 2020-07-10
dc.identifier.isbn 9788490488324
dc.identifier.uri http://hdl.handle.net/10251/148778
dc.description.abstract [EN] Insights and knowledge extraction from conventional analytics or reporting solutions is mostly neither trivial, nor intuitive. Moreover, many applications have unique interfaces and operating controls, forcing users to understand the tool’s domain language and handling procedures, in order to find specific information. Such complicated handling creates cognitive load and impacts the users’ productivity. More specifically due to the complexity of the purpose of analytics products, to provide meaningful information (e.g. descriptives, predictions, prescriptions) at the right time, it must be considered that users’ journeys in analytics products fundamentally differ to the journeys of users of traditional e-commerce products. Whereas a common rule- or filtering based recommendation routine, or a chatbot, might be applicable to facilitate and enhance the overall User Experience (UX) of online shoppers, this might not suffice for analysts who are seeking to derive insights from data. We present preliminary results of an industry research study about the approach to combine natural language dialog- and content-flow based user interactions with content recommendations, in order to enhance UX of information retrieval from a data-driven analytics system. We demonstrate a prototype model towards a virtual assistant system that integrates predictions of the user’s intention which information to retrieve next with prescriptive analytics based on the context of the current and past conversations. es_ES
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Web data es_ES
dc.subject Internet data es_ES
dc.subject Big data es_ES
dc.subject Qca es_ES
dc.subject Pls es_ES
dc.subject Sem es_ES
dc.subject Conference es_ES
dc.subject Machine Learning Engineering es_ES
dc.subject UX es_ES
dc.subject Conversational AI es_ES
dc.subject Natural Language Understanding es_ES
dc.title Enhancing UX of analytics products with AI technology es_ES
dc.type Capítulo de libro es_ES
dc.type Comunicación en congreso es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Mirchev, C.; Metz, J.; Herrmann, M. (2020). Enhancing UX of analytics products with AI technology. Editorial Universitat Politècnica de València. 341-341. http://hdl.handle.net/10251/148778 es_ES
dc.description.accrualMethod OCS es_ES
dc.relation.conferencename CARMA 2020 - 3rd International Conference on Advanced Research Methods and Analytics es_ES
dc.relation.conferencedate Julio 08-09,2020 es_ES
dc.relation.conferenceplace Valencia, Spain es_ES
dc.relation.publisherversion http://ocs.editorial.upv.es/index.php/CARMA/CARMA2020/paper/view/11615 es_ES
dc.description.upvformatpinicio 341 es_ES
dc.description.upvformatpfin 341 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela OCS\11615 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem