Payri, F., Reyes, E., & Galindo, J. (2000). Analysis and Modeling of the Fluid-Dynamic Effects in Branched Exhaust Junctions of ICE. Journal of Engineering for Gas Turbines and Power, 123(1), 197-203. doi:10.1115/1.1339988
Tang, S. K. (2004). Sound transmission characteristics of Tee-junctions and the associated length corrections. The Journal of the Acoustical Society of America, 115(1), 218-227. doi:10.1121/1.1631830
Harrison, M. F., De Soto, I., & Rubio Unzueta, P. L. (2004). A linear acoustic model for multi-cylinder IC engine intake manifolds including the effects of the intake throttle. Journal of Sound and Vibration, 278(4-5), 975-1011. doi:10.1016/j.jsv.2003.12.009
[+]
Payri, F., Reyes, E., & Galindo, J. (2000). Analysis and Modeling of the Fluid-Dynamic Effects in Branched Exhaust Junctions of ICE. Journal of Engineering for Gas Turbines and Power, 123(1), 197-203. doi:10.1115/1.1339988
Tang, S. K. (2004). Sound transmission characteristics of Tee-junctions and the associated length corrections. The Journal of the Acoustical Society of America, 115(1), 218-227. doi:10.1121/1.1631830
Harrison, M. F., De Soto, I., & Rubio Unzueta, P. L. (2004). A linear acoustic model for multi-cylinder IC engine intake manifolds including the effects of the intake throttle. Journal of Sound and Vibration, 278(4-5), 975-1011. doi:10.1016/j.jsv.2003.12.009
Karlsson, M., & Åbom, M. (2011). Quasi-steady model of the acoustic scattering properties of a T-junction. Journal of Sound and Vibration, 330(21), 5131-5137. doi:10.1016/j.jsv.2011.05.012
Karlsson, M., & Åbom, M. (2010). Aeroacoustics of T-junctions—An experimental investigation. Journal of Sound and Vibration, 329(10), 1793-1808. doi:10.1016/j.jsv.2009.11.024
Corberán, J. M. (1992). A New Constant Pressure Model for N-Branch Junctions. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 206(2), 117-123. doi:10.1243/pime_proc_1992_206_167_02
Schmandt, B., & Herwig, H. (2015). The head change coefficient for branched flows: Why «losses» due to junctions can be negative. International Journal of Heat and Fluid Flow, 54, 268-275. doi:10.1016/j.ijheatfluidflow.2015.06.004
Shaw, C. T., Lee, D. J., Richardson, S. H., & Pierson, S. (2000). Modelling the Effect of Plenum-Runner Interface Geometry on the Flow Through an Inlet System. SAE Technical Paper Series. doi:10.4271/2000-01-0569
Pérez-García, J., Sanmiguel-Rojas, E., Hernández-Grau, J., & Viedma, A. (2006). Numerical and experimental investigations on internal compressible flow at T-type junctions. Experimental Thermal and Fluid Science, 31(1), 61-74. doi:10.1016/j.expthermflusci.2006.02.001
Naeimi, H., Domiry, G., Gorji, M., Javadirad, G., & Keshavarz, M. (2011). A parametric design of compact exhaust manifold junction in heavy duty diesel engine using CFD. Thermal Science, 15(4), 1023-1033. doi:10.2298/tsci100417041n
Sakowitz, A., Mihaescu, M., & Fuchs, L. (2014). Turbulent flow mechanisms in mixing T-junctions by Large Eddy Simulations. International Journal of Heat and Fluid Flow, 45, 135-146. doi:10.1016/j.ijheatfluidflow.2013.06.014
Bassett, M. D., Winterbone, D. E., & Pearson, R. J. (2001). Calculation of steady flow pressure loss coefficients for pipe junctions. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 215(8), 861-881. doi:10.1177/095440620121500801
Hager, W. H. (1984). An Approximate Treatment of Flow in Branches and Bends. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 198(1), 63-69. doi:10.1243/pime_proc_1984_198_088_02
Paul, J., Selamet, A., Miazgowicz, K. D., & Tallio, K. V. (2007). Combining Flow Losses at Circular T-Junctions Representative of Intake Plenum and Primary Runner Interface. SAE Technical Paper Series. doi:10.4271/2007-01-0649
Pérez-García, J., Sanmiguel-Rojas, E., & Viedma, A. (2010). New coefficient to characterize energy losses in compressible flow at T-junctions. Applied Mathematical Modelling, 34(12), 4289-4305. doi:10.1016/j.apm.2010.05.005
Wang, W., Lu, Z., Deng, K., & Qu, S. (2014). An experimental study of compressible combining flow at 45° T-junctions. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 229(9), 1600-1610. doi:10.1177/0954406214546678
Peters, B., & Gosman, A. D. (1993). Numerical Simulation of Unsteady Flow in Engine Intake Manifolds. SAE Technical Paper Series. doi:10.4271/930609
Bingham, J. F., & Blair, G. P. (1985). An Improved Branched Pipe Model for Multi-Cylinder Automotive Engine Calculations. Proceedings of the Institution of Mechanical Engineers, Part D: Transport Engineering, 199(1), 65-77. doi:10.1243/pime_proc_1985_199_140_01
William-Louis, M. J. P., Ould-El-Hadrami, A., & Tournier, C. (1998). On the calculation of the unsteady compressible flow through an N-branch junction. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 212(1), 49-56. doi:10.1243/0954406981521033
Bassett, M. D., Pearson, R. J., Fleming, N. P., & Winterbone, D. E. (2003). A Multi-Pipe Junction Model for One-Dimensional Gas-Dynamic Simulations. SAE Technical Paper Series. doi:10.4271/2003-01-0370
Pearson, R. J., Bassett, M. D., Batten, P., Winterbone, D. E., & Weaver, N. W. E. (1999). Multi-Dimensional Wave Propagation in Pipe Junctions. SAE Technical Paper Series. doi:10.4271/1999-01-1186
Bassett, M. D., Winterbone, D. E., & Pearson, R. J. (2000). Modelling Engines with Pulse Converted Exhaust Manifolds Using One-Dimensional Techniques. SAE Technical Paper Series. doi:10.4271/2000-01-0290
Montenegro, G., Onorati, A., Piscaglia, F., & D’Errico, G. (2007). Integrated 1D-MultiD Fluid Dynamic Models for the Simulation of I.C.E. Intake and Exhaust Systems. SAE Technical Paper Series. doi:10.4271/2007-01-0495
Onorati, A., Montenegro, G., D’Errico, G., & Piscaglia, F. (2010). Integrated 1D-3D Fluid Dynamic Simulation of a Turbocharged Diesel Engine with Complete Intake and Exhaust Systems. SAE Technical Paper Series. doi:10.4271/2010-01-1194
Montenegro, G., Onorati, A., & Della Torre, A. (2013). The prediction of silencer acoustical performances by 1D, 1D–3D and quasi-3D non-linear approaches. Computers & Fluids, 71, 208-223. doi:10.1016/j.compfluid.2012.10.016
Morel, T., Silvestri, J., Goerg, K.-A., & Jebasinski, R. (1999). Modeling of Engine Exhaust Acoustics. SAE Technical Paper Series. doi:10.4271/1999-01-1665
Sapsford, S. M., Richards, V. C. M., Amlee, D. R., Morel, T., & Chappell, M. T. (1992). Exhaust System Evaluation and Design by Non-Linear Modeling. SAE Technical Paper Series. doi:10.4271/920686
Montenegro, G., Della Torre, A., Onorati, A., Fairbrother, R., & Dolinar, A. (2011). Development and Application of 3D Generic Cells to the Acoustic Modelling of Exhaust Systems. SAE Technical Paper Series. doi:10.4271/2011-01-1526
Payri, F., Desantes, J. M., & Broatch, A. (2000). Modified impulse method for the measurement of the frequency response of acoustic filters to weakly nonlinear transient excitations. The Journal of the Acoustical Society of America, 107(2), 731-738. doi:10.1121/1.428256
Torregrosa, A. J., Broatch, A., Fernández, T., & Denia, F. D. (2006). Description and measurement of the acoustic characteristics of two-tailpipe mufflers. The Journal of the Acoustical Society of America, 119(2), 723. doi:10.1121/1.2159228
Torregrosa, A. J., Broatch, A., Arnau, F. J., & Hernández, M. (2016). A non-linear quasi-3D model with Flux-Corrected-Transport for engine gas-exchange modelling. Journal of Computational and Applied Mathematics, 291, 103-111. doi:10.1016/j.cam.2015.03.034
Montenegro, G., Della Torre, A., Onorati, A., & Fairbrother, R. (2013). A Nonlinear Quasi-3D Approach for the Modeling of Mufflers with Perforated Elements and Sound-Absorbing Material. Advances in Acoustics and Vibration, 2013, 1-10. doi:10.1155/2013/546120
CMT—Motores Térmicos, Universitat Politècnica de Valènciahttp://www.openwam.org/
Ikeda, T., & Nakagawa, T. (1979). On the SHASTA FCT Algorithm for the Equation ∂ρ ∂t + ∂ ∂x (υ(ρ)ρ) = 0. Mathematics of Computation, 33(148), 1157. doi:10.2307/2006453
Toro, E. F., Spruce, M., & Speares, W. (1994). Restoration of the contact surface in the HLL-Riemann solver. Shock Waves, 4(1), 25-34. doi:10.1007/bf01414629
Van Leer, B. (1979). Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. Journal of Computational Physics, 32(1), 101-136. doi:10.1016/0021-9991(79)90145-1
[-]