- -

A Study of the Transient Response of Duct Junctions: Measurements and Gas-Dynamic Modeling with a Staggered Mesh Finite Volume Approach

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Study of the Transient Response of Duct Junctions: Measurements and Gas-Dynamic Modeling with a Staggered Mesh Finite Volume Approach

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Torregrosa, A. J. es_ES
dc.contributor.author Broatch, A. es_ES
dc.contributor.author García-Cuevas González, Luis Miguel es_ES
dc.contributor.author Hernández-Marco, Manuel es_ES
dc.date.accessioned 2020-07-30T03:34:00Z
dc.date.available 2020-07-30T03:34:00Z
dc.date.issued 2017-05-08 es_ES
dc.identifier.uri http://hdl.handle.net/10251/148864
dc.description.abstract [EN] Duct junctions play a major role in the operation and design of most piping systems. The objective of this paper is to establish the potential of a staggered mesh finite volume model as a way to improve the description of the effect of simple duct junctions on an otherwise one-dimensional flow system, such as the intake or exhaust of an internal combustion engine. Specific experiments have been performed in which different junctions have been characterized as a multi-port, and that have provided precise and reliable results on the propagation of pressure pulses across junctions. The results obtained have been compared to simulations performed with a staggered mesh finite volume method with different flux limiters and different meshes and, as a reference, have also been compared with the results of a more conventional pressure loss- based model. The results indicate that the staggered mesh finite volume model provides a closer description of wave dynamics, even if further work is needed to establish the optimal calculation settings. es_ES
dc.description.sponsorship Manuel Hernandez is partially supported through contract FPI-S2-2015-1064 of Programa de Apoyo para la Investigacin y Desarrollo (PAID) of Universitat Politecnica de Valencia. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Applied Sciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Duct junction es_ES
dc.subject Staggered mesh finite volume model es_ES
dc.subject Multi-port es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.subject.classification INGENIERIA AEROESPACIAL es_ES
dc.title A Study of the Transient Response of Duct Junctions: Measurements and Gas-Dynamic Modeling with a Staggered Mesh Finite Volume Approach es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/app7050480 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//FPI-S2-2015-1064/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Torregrosa, AJ.; Broatch, A.; García-Cuevas González, LM.; Hernández-Marco, M. (2017). A Study of the Transient Response of Duct Junctions: Measurements and Gas-Dynamic Modeling with a Staggered Mesh Finite Volume Approach. Applied Sciences. 7(5):1-25. https://doi.org/10.3390/app7050480 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/app7050480 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 25 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.description.issue 5 es_ES
dc.identifier.eissn 2076-3417 es_ES
dc.relation.pasarela S\336883 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Payri, F., Reyes, E., & Galindo, J. (2000). Analysis and Modeling of the Fluid-Dynamic Effects in Branched Exhaust Junctions of ICE. Journal of Engineering for Gas Turbines and Power, 123(1), 197-203. doi:10.1115/1.1339988 es_ES
dc.description.references Tang, S. K. (2004). Sound transmission characteristics of Tee-junctions and the associated length corrections. The Journal of the Acoustical Society of America, 115(1), 218-227. doi:10.1121/1.1631830 es_ES
dc.description.references Harrison, M. F., De Soto, I., & Rubio Unzueta, P. L. (2004). A linear acoustic model for multi-cylinder IC engine intake manifolds including the effects of the intake throttle. Journal of Sound and Vibration, 278(4-5), 975-1011. doi:10.1016/j.jsv.2003.12.009 es_ES
dc.description.references Karlsson, M., & Åbom, M. (2011). Quasi-steady model of the acoustic scattering properties of a T-junction. Journal of Sound and Vibration, 330(21), 5131-5137. doi:10.1016/j.jsv.2011.05.012 es_ES
dc.description.references Karlsson, M., & Åbom, M. (2010). Aeroacoustics of T-junctions—An experimental investigation. Journal of Sound and Vibration, 329(10), 1793-1808. doi:10.1016/j.jsv.2009.11.024 es_ES
dc.description.references Corberán, J. M. (1992). A New Constant Pressure Model for N-Branch Junctions. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 206(2), 117-123. doi:10.1243/pime_proc_1992_206_167_02 es_ES
dc.description.references Schmandt, B., & Herwig, H. (2015). The head change coefficient for branched flows: Why «losses» due to junctions can be negative. International Journal of Heat and Fluid Flow, 54, 268-275. doi:10.1016/j.ijheatfluidflow.2015.06.004 es_ES
dc.description.references Shaw, C. T., Lee, D. J., Richardson, S. H., & Pierson, S. (2000). Modelling the Effect of Plenum-Runner Interface Geometry on the Flow Through an Inlet System. SAE Technical Paper Series. doi:10.4271/2000-01-0569 es_ES
dc.description.references Pérez-García, J., Sanmiguel-Rojas, E., Hernández-Grau, J., & Viedma, A. (2006). Numerical and experimental investigations on internal compressible flow at T-type junctions. Experimental Thermal and Fluid Science, 31(1), 61-74. doi:10.1016/j.expthermflusci.2006.02.001 es_ES
dc.description.references Naeimi, H., Domiry, G., Gorji, M., Javadirad, G., & Keshavarz, M. (2011). A parametric design of compact exhaust manifold junction in heavy duty diesel engine using CFD. Thermal Science, 15(4), 1023-1033. doi:10.2298/tsci100417041n es_ES
dc.description.references Sakowitz, A., Mihaescu, M., & Fuchs, L. (2014). Turbulent flow mechanisms in mixing T-junctions by Large Eddy Simulations. International Journal of Heat and Fluid Flow, 45, 135-146. doi:10.1016/j.ijheatfluidflow.2013.06.014 es_ES
dc.description.references Bassett, M. D., Winterbone, D. E., & Pearson, R. J. (2001). Calculation of steady flow pressure loss coefficients for pipe junctions. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 215(8), 861-881. doi:10.1177/095440620121500801 es_ES
dc.description.references Hager, W. H. (1984). An Approximate Treatment of Flow in Branches and Bends. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 198(1), 63-69. doi:10.1243/pime_proc_1984_198_088_02 es_ES
dc.description.references Paul, J., Selamet, A., Miazgowicz, K. D., & Tallio, K. V. (2007). Combining Flow Losses at Circular T-Junctions Representative of Intake Plenum and Primary Runner Interface. SAE Technical Paper Series. doi:10.4271/2007-01-0649 es_ES
dc.description.references Pérez-García, J., Sanmiguel-Rojas, E., & Viedma, A. (2010). New coefficient to characterize energy losses in compressible flow at T-junctions. Applied Mathematical Modelling, 34(12), 4289-4305. doi:10.1016/j.apm.2010.05.005 es_ES
dc.description.references Wang, W., Lu, Z., Deng, K., & Qu, S. (2014). An experimental study of compressible combining flow at 45° T-junctions. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 229(9), 1600-1610. doi:10.1177/0954406214546678 es_ES
dc.description.references Peters, B., & Gosman, A. D. (1993). Numerical Simulation of Unsteady Flow in Engine Intake Manifolds. SAE Technical Paper Series. doi:10.4271/930609 es_ES
dc.description.references Bingham, J. F., & Blair, G. P. (1985). An Improved Branched Pipe Model for Multi-Cylinder Automotive Engine Calculations. Proceedings of the Institution of Mechanical Engineers, Part D: Transport Engineering, 199(1), 65-77. doi:10.1243/pime_proc_1985_199_140_01 es_ES
dc.description.references William-Louis, M. J. P., Ould-El-Hadrami, A., & Tournier, C. (1998). On the calculation of the unsteady compressible flow through an N-branch junction. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 212(1), 49-56. doi:10.1243/0954406981521033 es_ES
dc.description.references Bassett, M. D., Pearson, R. J., Fleming, N. P., & Winterbone, D. E. (2003). A Multi-Pipe Junction Model for One-Dimensional Gas-Dynamic Simulations. SAE Technical Paper Series. doi:10.4271/2003-01-0370 es_ES
dc.description.references Pearson, R. J., Bassett, M. D., Batten, P., Winterbone, D. E., & Weaver, N. W. E. (1999). Multi-Dimensional Wave Propagation in Pipe Junctions. SAE Technical Paper Series. doi:10.4271/1999-01-1186 es_ES
dc.description.references Bassett, M. D., Winterbone, D. E., & Pearson, R. J. (2000). Modelling Engines with Pulse Converted Exhaust Manifolds Using One-Dimensional Techniques. SAE Technical Paper Series. doi:10.4271/2000-01-0290 es_ES
dc.description.references Montenegro, G., Onorati, A., Piscaglia, F., & D’Errico, G. (2007). Integrated 1D-MultiD Fluid Dynamic Models for the Simulation of I.C.E. Intake and Exhaust Systems. SAE Technical Paper Series. doi:10.4271/2007-01-0495 es_ES
dc.description.references Onorati, A., Montenegro, G., D’Errico, G., & Piscaglia, F. (2010). Integrated 1D-3D Fluid Dynamic Simulation of a Turbocharged Diesel Engine with Complete Intake and Exhaust Systems. SAE Technical Paper Series. doi:10.4271/2010-01-1194 es_ES
dc.description.references Montenegro, G., Onorati, A., & Della Torre, A. (2013). The prediction of silencer acoustical performances by 1D, 1D–3D and quasi-3D non-linear approaches. Computers & Fluids, 71, 208-223. doi:10.1016/j.compfluid.2012.10.016 es_ES
dc.description.references Morel, T., Silvestri, J., Goerg, K.-A., & Jebasinski, R. (1999). Modeling of Engine Exhaust Acoustics. SAE Technical Paper Series. doi:10.4271/1999-01-1665 es_ES
dc.description.references Sapsford, S. M., Richards, V. C. M., Amlee, D. R., Morel, T., & Chappell, M. T. (1992). Exhaust System Evaluation and Design by Non-Linear Modeling. SAE Technical Paper Series. doi:10.4271/920686 es_ES
dc.description.references Montenegro, G., Della Torre, A., Onorati, A., Fairbrother, R., & Dolinar, A. (2011). Development and Application of 3D Generic Cells to the Acoustic Modelling of Exhaust Systems. SAE Technical Paper Series. doi:10.4271/2011-01-1526 es_ES
dc.description.references Payri, F., Desantes, J. M., & Broatch, A. (2000). Modified impulse method for the measurement of the frequency response of acoustic filters to weakly nonlinear transient excitations. The Journal of the Acoustical Society of America, 107(2), 731-738. doi:10.1121/1.428256 es_ES
dc.description.references Torregrosa, A. J., Broatch, A., Fernández, T., & Denia, F. D. (2006). Description and measurement of the acoustic characteristics of two-tailpipe mufflers. The Journal of the Acoustical Society of America, 119(2), 723. doi:10.1121/1.2159228 es_ES
dc.description.references Torregrosa, A. J., Broatch, A., Arnau, F. J., & Hernández, M. (2016). A non-linear quasi-3D model with Flux-Corrected-Transport for engine gas-exchange modelling. Journal of Computational and Applied Mathematics, 291, 103-111. doi:10.1016/j.cam.2015.03.034 es_ES
dc.description.references Montenegro, G., Della Torre, A., Onorati, A., & Fairbrother, R. (2013). A Nonlinear Quasi-3D Approach for the Modeling of Mufflers with Perforated Elements and Sound-Absorbing Material. Advances in Acoustics and Vibration, 2013, 1-10. doi:10.1155/2013/546120 es_ES
dc.description.references CMT—Motores Térmicos, Universitat Politècnica de Valènciahttp://www.openwam.org/ es_ES
dc.description.references Ikeda, T., & Nakagawa, T. (1979). On the SHASTA FCT Algorithm for the Equation ∂ρ ∂t + ∂ ∂x (υ(ρ)ρ) = 0. Mathematics of Computation, 33(148), 1157. doi:10.2307/2006453 es_ES
dc.description.references Toro, E. F., Spruce, M., & Speares, W. (1994). Restoration of the contact surface in the HLL-Riemann solver. Shock Waves, 4(1), 25-34. doi:10.1007/bf01414629 es_ES
dc.description.references Van Leer, B. (1979). Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. Journal of Computational Physics, 32(1), 101-136. doi:10.1016/0021-9991(79)90145-1 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem