- -

Drought tolerance in Pinus halepensis seed sources as identified by distinctive physiological and molecular markers

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Drought tolerance in Pinus halepensis seed sources as identified by distinctive physiological and molecular markers

Show full item record

Taïbi, K.; Campo García, ADD.; Vilagrosa, A.; Belles Albert, JM.; López-Gresa, MP.; Pla, D.; Calvete Chornet, JJ.... (2017). Drought tolerance in Pinus halepensis seed sources as identified by distinctive physiological and molecular markers. Frontiers in Plant Science. 8:1-13. https://doi.org/10.3389/fpls.2017.01202

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/148871

Files in this item

Item Metadata

Title: Drought tolerance in Pinus halepensis seed sources as identified by distinctive physiological and molecular markers
Author: Taïbi, Khaled Campo García, Antonio Dámaso Del Vilagrosa, Alberto Belles Albert, José Mª López-Gresa, María Pilar Pla, Davinia Calvete Chornet, Juan José López-Nicolás, José M. Mulet, José Miguel
UPV Unit: Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Issued date:
Abstract:
[EN] Drought is one of the main constraints determining forest species growth, survival and productivity, and therefore one of the main limitations for reforestation or afforestation. The aim of this study is to characterize ...[+]
Subjects: Pinus halepensis , Aleppo pine , Drought tolerance , Physiological response , Soluble sugars , Free amino acids , Plant proteomics , Glutathione
Copyrigths: Reconocimiento (by)
Source:
Frontiers in Plant Science. (eissn: 1664-462X )
DOI: 10.3389/fpls.2017.01202
Publisher:
Frontiers Media SA
Publisher version: https://doi.org/10.3389/fpls.2017.01202
Project ID:
info:eu-repo/grantAgreement/UPV//PAID-05-11/
info:eu-repo/grantAgreement/MINECO//AGL2014-57431-P/ES/PRODUCCION BIOLOGICA DE LOS PIGMENTOS ANTIOXIDANTES BETALAINAS Y EVALUACION DE SU CAPACIDAD FUNCIONAL EN MODELO IN VIVO/
info:eu-repo/grantAgreement/MINECO//CGL2015-69773-C2-2-P/ES/VULNERABILIDAD DE ESPECIES Y COMUNIDADES MEDITERRANEAS A LA RECURRENCIA DE INCENDIOS Y SEQUIAS EXTREMAS. EFECTOS SOBRE EL BALANCE HIDRICO Y LA DINAMICA DE LA VEGETACION./
Thanks:
This study is a part of the research project: "Application of molecular biology techniques in forest restoration in Mediterranean environments, PAID-05-11" funded by the Universitat Politecnica de Valencia (UPV), program ...[+]
Type: Artículo

References

Alcázar, R., Altabella, T., Marco, F., Bortolotti, C., Reymond, M., Koncz, C., … Tiburcio, A. F. (2010). Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta, 231(6), 1237-1249. doi:10.1007/s00425-010-1130-0

Atzmon, N., Moshe, Y., & Schiller, G. (2004). Ecophysiological response to severe drought in Pinus halepensis Mill. trees of two provenances. Plant Ecology (formerly Vegetatio), 171(1/2), 15-22. doi:10.1023/b:vege.0000029371.44518.38

Baquedano, F. J., & Castillo, F. J. (2006). Comparative ecophysiological effects of drought on seedlings of the Mediterranean water-saver Pinus halepensis and water-spenders Quercus coccifera and Quercus ilex. Trees, 20(6), 689-700. doi:10.1007/s00468-006-0084-0 [+]
Alcázar, R., Altabella, T., Marco, F., Bortolotti, C., Reymond, M., Koncz, C., … Tiburcio, A. F. (2010). Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta, 231(6), 1237-1249. doi:10.1007/s00425-010-1130-0

Atzmon, N., Moshe, Y., & Schiller, G. (2004). Ecophysiological response to severe drought in Pinus halepensis Mill. trees of two provenances. Plant Ecology (formerly Vegetatio), 171(1/2), 15-22. doi:10.1023/b:vege.0000029371.44518.38

Baquedano, F. J., & Castillo, F. J. (2006). Comparative ecophysiological effects of drought on seedlings of the Mediterranean water-saver Pinus halepensis and water-spenders Quercus coccifera and Quercus ilex. Trees, 20(6), 689-700. doi:10.1007/s00468-006-0084-0

Baquedano, F. J., Valladares, F., & Castillo, F. J. (2008). Phenotypic plasticity blurs ecotypic divergence in the response of Quercus coccifera and Pinus halepensis to water stress. European Journal of Forest Research, 127(6), 495-506. doi:10.1007/s10342-008-0232-8

Bartlett, M. K., Scoffoni, C., & Sack, L. (2012). The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global meta-analysis. Ecology Letters, 15(5), 393-405. doi:10.1111/j.1461-0248.2012.01751.x

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. doi:10.1016/0003-2697(76)90527-3

Chen, H., & Jiang, J.-G. (2010). Osmotic adjustment and plant adaptation to environmental changes related to drought and salinity. Environmental Reviews, 18(NA), 309-319. doi:10.1139/a10-014

Cuesta, B., Villar-Salvador, P., Puértolas, J., Jacobs, D. F., & Rey Benayas, J. M. (2010). Why do large, nitrogen rich seedlings better resist stressful transplanting conditions? A physiological analysis in two functionally contrasting Mediterranean forest species. Forest Ecology and Management, 260(1), 71-78. doi:10.1016/j.foreco.2010.04.002

Duncan, D. B. (1955). Multiple Range and Multiple F Tests. Biometrics, 11(1), 1. doi:10.2307/3001478

Eichel, J., Gonzalez, J. C., Hotze, M., Matthews, R. G., & Schroder, J. (1995). Vitamin-B12-Independent Methionine Synthase from a Higher Plant (Catharanthus Roseus). Molecular Characterization, Regulation, Heterologous Expression, and Enzyme Properties. European Journal of Biochemistry, 230(3), 1053-1058. doi:10.1111/j.1432-1033.1995.tb20655.x

Fayos, J., Bellés, J. M., López-Gresa, M. P., Primo, J., & Conejero, V. (2006). Induction of gentisic acid 5-O-β-d-xylopyranoside in tomato and cucumber plants infected by different pathogens. Phytochemistry, 67(2), 142-148. doi:10.1016/j.phytochem.2005.10.014

Franck, N., Vaast, P., Genard, M., & Dauzat, J. (2006). Soluble sugars mediate sink feedback down-regulation of leaf photosynthesis in field-grown Coffea arabica. Tree Physiology, 26(4), 517-525. doi:10.1093/treephys/26.4.517

Freeman, J. L., Persans, M. W., Nieman, K., Albrecht, C., Peer, W., Pickering, I. J., & Salt, D. E. (2004). Increased Glutathione Biosynthesis Plays a Role in Nickel Tolerance in Thlaspi Nickel Hyperaccumulators. The Plant Cell, 16(8), 2176-2191. doi:10.1105/tpc.104.023036

Golldack, D., Li, C., Mohan, H., & Probst, N. (2014). Tolerance to drought and salt stress in plants: Unraveling the signaling networks. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00151

Gomez-Garay, A., Lopez, J. A., Camafeita, E., Bueno, M. A., & Pintos, B. (2013). Proteomic perspective of Quercus suber somatic embryogenesis. Journal of Proteomics, 93, 314-325. doi:10.1016/j.jprot.2013.06.006

Groppa, M. D., & Benavides, M. P. (2007). Polyamines and abiotic stress: recent advances. Amino Acids, 34(1), 35-45. doi:10.1007/s00726-007-0501-8

Grossnickle, S. C. (2012). Why seedlings survive: influence of plant attributes. New Forests, 43(5-6), 711-738. doi:10.1007/s11056-012-9336-6

He, C.-Y., Zhang, J.-G., Duan, A.-G., Sun, H.-G., Fu, L.-H., & Zheng, S.-X. (2007). Proteins responding to drought and high-temperature stress in Pinus armandii Franch. Canadian Journal of Botany, 85(10), 994-1001. doi:10.1139/b07-085

Hu, B., Simon, J., Kuster, T. M., Arend, M., Siegwolf, R., & Rennenberg, H. (2012). Nitrogen partitioning in oak leaves depends on species, provenance, climate conditions and soil type. Plant Biology, 15, 198-209. doi:10.1111/j.1438-8677.2012.00658.x

Klein, T., Di Matteo, G., Rotenberg, E., Cohen, S., & Yakir, D. (2012). Differential ecophysiological response of a major Mediterranean pine species across a climatic gradient. Tree Physiology, 33(1), 26-36. doi:10.1093/treephys/tps116

Labudda, M., & Safiul Azam, F. M. (2014). Glutathione-dependent responses of plants to drought: a review. Acta Societatis Botanicorum Poloniae, 83(1), 3-12. doi:10.5586/asbp.2014.003

Leck, M. A., Parker, V. T., & Simpson, R. L. (Eds.). (2008). Seedling Ecology and Evolution. doi:10.1017/cbo9780511815133

Lichtenthaler, H. K. (1987). [34] Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Plant Cell Membranes, 350-382. doi:10.1016/0076-6879(87)48036-1

Maestre, F. T., & Cortina, J. (2004). Are Pinus halepensis plantations useful as a restoration tool in semiarid Mediterranean areas? Forest Ecology and Management, 198(1-3), 303-317. doi:10.1016/j.foreco.2004.05.040

Margolis, H. A., & Brand, D. G. (1990). An ecophysiological basis for understanding plantation establishment. Canadian Journal of Forest Research, 20(4), 375-390. doi:10.1139/x90-056

Martinez-Ferri, E., Balaguer, L., Valladares, F., Chico, J. M., & Manrique, E. (2000). Energy dissipation in drought-avoiding and drought-tolerant tree species at midday during the Mediterranean summer. Tree Physiology, 20(2), 131-138. doi:10.1093/treephys/20.2.131

Maxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence—a practical guide. Journal of Experimental Botany, 51(345), 659-668. doi:10.1093/jxb/51.345.659

McDowell, N. G. (2011). Mechanisms Linking Drought, Hydraulics, Carbon Metabolism, and Vegetation Mortality. Plant Physiology, 155(3), 1051-1059. doi:10.1104/pp.110.170704

Mordukhova, E. A., & Pan, J.-G. (2013). Evolved Cobalamin-Independent Methionine Synthase (MetE) Improves the Acetate and Thermal Tolerance of Escherichia coli. Applied and Environmental Microbiology, 79(24), 7905-7915. doi:10.1128/aem.01952-13

Mulet, J. M., Alemany, B., Ros, R., Calvete, J. J., & Serrano, R. (2004). Expression of a plant serine O-acetyltransferase inSaccharomyces cerevisiae confers osmotic tolerance and creates an alternative pathway for cysteine biosynthesis. Yeast, 21(4), 303-312. doi:10.1002/yea.1076

Mulet, J. M., Martin, D. E., Loewith, R., & Hall, M. N. (2006). Mutual Antagonism of Target of Rapamycin and Calcineurin Signaling. Journal of Biological Chemistry, 281(44), 33000-33007. doi:10.1074/jbc.m604244200

Patakas, A., Nikolaou, N., Zioziou, E., Radoglou, K., & Noitsakis, B. (2002). The role of organic solute and ion accumulation in osmotic adjustment in drought-stressed grapevines. Plant Science, 163(2), 361-367. doi:10.1016/s0168-9452(02)00140-1

Peguero-Pina, J. J., Sancho-Knapik, D., Barrón, E., Camarero, J. J., Vilagrosa, A., & Gil-Pelegrín, E. (2014). Morphological and physiological divergences within Quercus ilex support the existence of different ecotypes depending on climatic dryness. Annals of Botany, 114(2), 301-313. doi:10.1093/aob/mcu108

Peguero-Pina, J. J., Sisó, S., Flexas, J., Galmés, J., Niinemets, Ü., Sancho-Knapik, D., & Gil-Pelegrín, E. (2017). Coordinated modifications in mesophyll conductance, photosynthetic potentials and leaf nitrogen contribute to explain the large variation in foliage net assimilation rates across Quercus ilex provenances. Tree Physiology, 37(8), 1084-1094. doi:10.1093/treephys/tpx057

Pinheiro, C., António, C., Ortuño, M. F., Dobrev, P. I., Hartung, W., Thomas-Oates, J., … Wilson, J. C. (2011). Initial water deficit effects on Lupinus albus photosynthetic performance, carbon metabolism, and hormonal balance: metabolic reorganization prior to early stress responses. Journal of Experimental Botany, 62(14), 4965-4974. doi:10.1093/jxb/err194

Pyngrope, S., Bhoomika, K., & Dubey, R. S. (2012). Reactive oxygen species, ascorbate–glutathione pool, and enzymes of their metabolism in drought-sensitive and tolerant indica rice (Oryza sativa L.) seedlings subjected to progressing levels of water deficit. Protoplasma, 250(2), 585-600. doi:10.1007/s00709-012-0444-0

Rodríguez-Calcerrada, J., Pérez-Ramos, I. M., Ourcival, J.-M., Limousin, J.-M., Joffre, R., & Rambal, S. (2011). Is selective thinning an adequate practice for adapting Quercus ilex coppices to climate change? Annals of Forest Science, 68(3), 575-585. doi:10.1007/s13595-011-0050-x

Ruiz-Yanetti, S., Chirino, E., & Bellot, J. (2016). Daily whole-seedling transpiration determined by minilysimeters, allows the estimation of the water requirements of seedlings used for dryland afforestation. Journal of Arid Environments, 124, 341-351. doi:10.1016/j.jaridenv.2015.08.017

Sánchez-Gómez, D., Majada, J., Alía, R., Feito, I., & Aranda, I. (2010). Intraspecific variation in growth and allocation patterns in seedlings of Pinus pinaster Ait. submitted to contrasting watering regimes: can water availability explain regional variation? Annals of Forest Science, 67(5), 505-504. doi:10.1051/forest/2010007

Serrano, R., Mulet, J. M., Rios, G., Marquez, J. A., Larrinoa, I. igo F. de, Leube, M. P., … Montesinos, C. (1999). A glimpse of the mechanisms of ion homeostasis during salt stress. Journal of Experimental Botany, 50(Special_Issue), 1023-1036. doi:10.1093/jxb/50.special_issue.1023

Taïbi, K., del Campo, A. D., Aguado, A., & Mulet, J. M. (2015). The effect of genotype by environment interaction, phenotypic plasticity and adaptation on Pinus halepensis reforestation establishment under expected climate drifts. Ecological Engineering, 84, 218-228. doi:10.1016/j.ecoleng.2015.09.005

Taïbi, K., del Campo, A. D., Mulet, J. M., Flors, J., & Aguado, A. (2014). Testing Aleppo pine seed sources response to climate change by using trial sites reflecting future conditions. New Forests, 45(5), 603-624. doi:10.1007/s11056-014-9423-y

Verbruggen, N., & Hermans, C. (2008). Proline accumulation in plants: a review. Amino Acids, 35(4), 753-759. doi:10.1007/s00726-008-0061-6

Vilagrosa, A., Cortina, J., Gil-Pelegrin, E., & Bellot, J. (2003). Suitability of Drought-Preconditioning Techniques in Mediterranean Climate. Restoration Ecology, 11(2), 208-216. doi:10.1046/j.1526-100x.2003.00172.x

Vilagrosa, A., Morales, F., Abadía, A., Bellot, J., Cochard, H., & Gil-Pelegrin, E. (2010). Are symplast tolerance to intense drought conditions and xylem vulnerability to cavitation coordinated? An integrated analysis of photosynthetic, hydraulic and leaf level processes in two Mediterranean drought-resistant species. Environmental and Experimental Botany, 69(3), 233-242. doi:10.1016/j.envexpbot.2010.04.013

Voss, I., Sunil, B., Scheibe, R., & Raghavendra, A. S. (2013). Emerging concept for the role of photorespiration as an important part of abiotic stress response. Plant Biology, 15(4), 713-722. doi:10.1111/j.1438-8677.2012.00710.x

White, T. L., Adams, W. T., & Neale, D. B. (Eds.). (2007). Forest genetics. doi:10.1079/9781845932855.0000

Williams, M. I., & Dumroese, R. K. (2013). Preparing for Climate Change: Forestry and Assisted Migration. Journal of Forestry, 111(4), 287-297. doi:10.5849/jof.13-016

Zhang, Y.-J., Sack, L., Cao, K.-F., Wei, X.-M., & Li, N. (2017). Speed versus endurance tradeoff in plants: Leaves with higher photosynthetic rates show stronger seasonal declines. Scientific Reports, 7(1). doi:10.1038/srep42085

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record