- -

The Role of SHI/STY/SRS Genes in Organ Growth and Carpel Development Is Conserved in the Distant Eudicot Species Arabidopsis thaliana and Nicotiana benthamiana

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The Role of SHI/STY/SRS Genes in Organ Growth and Carpel Development Is Conserved in the Distant Eudicot Species Arabidopsis thaliana and Nicotiana benthamiana

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gomariz, A es_ES
dc.contributor.author Sánchez-Gerschon, Verónica es_ES
dc.contributor.author Fourquin, Chloe es_ES
dc.contributor.author FERRANDIZ MAESTRE, CRISTINA es_ES
dc.date.accessioned 2020-07-30T03:34:44Z
dc.date.available 2020-07-30T03:34:44Z
dc.date.issued 2017-05-23 es_ES
dc.identifier.uri http://hdl.handle.net/10251/148879
dc.description.abstract [EN] Carpels are a distinctive feature of angiosperms, the ovule-bearing female reproductive organs that endow them with multiple selective advantages likely linked to the evolutionary success of flowering plants. Gene regulatory networks directing the development of carpel specialized tissues and patterning have been proposed based on genetic and molecular studies carried out in Arabidopsis thaliana. However, studies on the conservation/diversification of the elements and the topology of this network are still scarce. In this work, we have studied the functional conservation of transcription factors belonging to the SHI/STY/SRS family in two distant species within the eudicots, Eschscholzia californica and Nicotiana benthamiana. We have found that the expression patterns of EcSRS-L and NbSRS-L genes during flower development are similar to each other and to those reported for Arabidopsis SHI/STY/SRS genes. We have also characterized the phenotypic effects of NbSRS-L gene inactivation and overexpression in Nicotiana. Our results support the widely conserved role of SHI/STY/SRS genes at the top of the regulatory network directing style and stigma development, specialized tissues specific to the angiosperm carpels, at least within core eudicots, providing new insights on the possible evolutionary origin of the carpels. es_ES
dc.description.sponsorship This work was supported by the Spanish MINECO/FEDER grants no BIO2012-32902 and BIO2015-64531-R to CFe. AG-F was supported by a predoctoral contract of the Generalitat Valenciana (ACIF/2013/044). We acknowledge support of the publication fee by the CSIC Open Access Publication Support Initiative through its Unit of Information Resources for Research (URICI). es_ES
dc.language Inglés es_ES
dc.publisher Frontiers Media SA es_ES
dc.relation.ispartof Frontiers in Plant Science es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Carpel evolution es_ES
dc.subject Eschscholzia californica es_ES
dc.subject Gynoecium es_ES
dc.subject Nicotiana benthamiana es_ES
dc.subject Style and stigma, Virus-induced gene silencing (VIGS) es_ES
dc.subject SHI STY SRS factors es_ES
dc.title The Role of SHI/STY/SRS Genes in Organ Growth and Carpel Development Is Conserved in the Distant Eudicot Species Arabidopsis thaliana and Nicotiana benthamiana es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3389/fpls.2017.00814 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIO2012-32902/ES/UN CODIGO COMBINATORIAL DE COMPLEJOS TRANSCRIPCIONALES QUE REGULAN LA MORFOLOGIA DEL GINECEO Y EL FRUTO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACIF%2F2013%2F044/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIO2015-64531-R/ES/EL CONTROL DE LA PARADA GLOBAL DE LA PROLIFERACION EN PLANTAS MONOCARPICAS: DISEÑO DE ESTRATEGIAS BIOTECNOLOGICAS PARA AUMENTAR LA PRODUCCION EN CULTIVOS ANUALES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Gomariz, A.; Sánchez-Gerschon, V.; Fourquin, C.; Ferrandiz Maestre, C. (2017). The Role of SHI/STY/SRS Genes in Organ Growth and Carpel Development Is Conserved in the Distant Eudicot Species Arabidopsis thaliana and Nicotiana benthamiana. Frontiers in Plant Science. 8:1-17. https://doi.org/10.3389/fpls.2017.00814 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3389/fpls.2017.00814 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.identifier.eissn 1664-462X es_ES
dc.identifier.pmid 28588595 es_ES
dc.identifier.pmcid PMC5440560 es_ES
dc.relation.pasarela S\356253 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Consejo Superior de Investigaciones Científicas es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Alvarez, J. P., Goldshmidt, A., Efroni, I., Bowman, J. L., & Eshed, Y. (2009). The NGATHA Distal Organ Development Genes Are Essential for Style Specification in Arabidopsis. The Plant Cell, 21(5), 1373-1393. doi:10.1105/tpc.109.065482 es_ES
dc.description.references ALVAREZBUYLLA, E., BENITEZ, M., DAVILA, E., CHAOS, A., ESPINOSASOTO, C., & PADILLALONGORIA, P. (2007). Gene regulatory network models for plant development. Current Opinion in Plant Biology, 10(1), 83-91. doi:10.1016/j.pbi.2006.11.008 es_ES
dc.description.references Ballester, P., & Ferrándiz, C. (2017). Shattering fruits: variations on a dehiscent theme. Current Opinion in Plant Biology, 35, 68-75. doi:10.1016/j.pbi.2016.11.008 es_ES
dc.description.references Bombarely, A., Rosli, H. G., Vrebalov, J., Moffett, P., Mueller, L. A., & Martin, G. B. (2012). A Draft Genome Sequence of Nicotiana benthamiana to Enhance Molecular Plant-Microbe Biology Research. Molecular Plant-Microbe Interactions®, 25(12), 1523-1530. doi:10.1094/mpmi-06-12-0148-ta es_ES
dc.description.references Bowman, J. L., Smyth, D. R., & Meyerowitz, E. M. (1989). Genes directing flower development in Arabidopsis. The Plant Cell, 1(1), 37-52. doi:10.1105/tpc.1.1.37 es_ES
dc.description.references Bradley, D., Carpenter, R., Sommer, H., Hartley, N., & Coen, E. (1993). Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of antirrhinum. Cell, 72(1), 85-95. doi:10.1016/0092-8674(93)90052-r es_ES
dc.description.references Chávez Montes, R. A., Herrera-Ubaldo, H., Serwatowska, J., & de Folter, S. (2015). Towards a comprehensive and dynamic gynoecium gene regulatory network. Current Plant Biology, 3-4, 3-12. doi:10.1016/j.cpb.2015.08.002 es_ES
dc.description.references Clemente, T. (s. f.). Nicotiana (Nicotiana tobaccum, Nicotiana benthamiana). Agrobacterium Protocols, 143-154. doi:10.1385/1-59745-130-4:143 es_ES
dc.description.references Clough, S. J., & Bent, A. F. (1998). Floral dip: a simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana. The Plant Journal, 16(6), 735-743. doi:10.1046/j.1365-313x.1998.00343.x es_ES
dc.description.references Colombo, M., Brambilla, V., Marcheselli, R., Caporali, E., Kater, M. M., & Colombo, L. (2010). A new role for the SHATTERPROOF genes during Arabidopsis gynoecium development. Developmental Biology, 337(2), 294-302. doi:10.1016/j.ydbio.2009.10.043 es_ES
dc.description.references Crawford, B. C. W., Ditta, G., & Yanofsky, M. F. (2007). The NTT Gene Is Required for Transmitting-Tract Development in Carpels of Arabidopsis thaliana. Current Biology, 17(13), 1101-1108. doi:10.1016/j.cub.2007.05.079 es_ES
dc.description.references Crawford, B. C. W., & Yanofsky, M. F. (2011). HALF FILLED promotes reproductive tract development and fertilization efficiency in Arabidopsis thaliana. Development, 138(14), 2999-3009. doi:10.1242/dev.067793 es_ES
dc.description.references Curtis, M. D., & Grossniklaus, U. (2003). A Gateway Cloning Vector Set for High-Throughput Functional Analysis of Genes in Planta. Plant Physiology, 133(2), 462-469. doi:10.1104/pp.103.027979 es_ES
dc.description.references Davidson, E. H., & Levine, M. S. (2008). Properties of developmental gene regulatory networks. Proceedings of the National Academy of Sciences, 105(51), 20063-20066. doi:10.1073/pnas.0806007105 es_ES
dc.description.references Davies, B., Motte, P., Keck, E., Saedler, H., Sommer, H., & Schwarz-Sommer, Z. (1999). PLENA and FARINELLI: redundancy and regulatory interactions between two Antirrhinum MADS-box factors controlling flower development. The EMBO Journal, 18(14), 4023-4034. doi:10.1093/emboj/18.14.4023 es_ES
dc.description.references Davila-Velderrain, J., Martinez-Garcia, J. C., & Alvarez-Buylla, E. R. (2016). Dynamic network modelling to understand flowering transition and floral patterning. Journal of Experimental Botany, 67(9), 2565-2572. doi:10.1093/jxb/erw123 es_ES
dc.description.references De Lucas, M., & Brady, S. M. (2013). Gene regulatory networks in the Arabidopsis root. Current Opinion in Plant Biology, 16(1), 50-55. doi:10.1016/j.pbi.2012.10.007 es_ES
dc.description.references Dreni, L., Pilatone, A., Yun, D., Erreni, S., Pajoro, A., Caporali, E., … Kater, M. M. (2011). Functional Analysis of All AGAMOUS Subfamily Members in Rice Reveals Their Roles in Reproductive Organ Identity Determination and Meristem Determinacy. The Plant Cell, 23(8), 2850-2863. doi:10.1105/tpc.111.087007 es_ES
dc.description.references Eklund, D. M., Cierlik, I., Ståldal, V., Claes, A. R., Vestman, D., Chandler, J., & Sundberg, E. (2011). Expression of Arabidopsis SHORT INTERNODES/STYLISH Family Genes in Auxin Biosynthesis Zones of Aerial Organs Is Dependent on a GCC Box-Like Regulatory Element. Plant Physiology, 157(4), 2069-2080. doi:10.1104/pp.111.182253 es_ES
dc.description.references Eklund, D. M., Ståldal, V., Valsecchi, I., Cierlik, I., Eriksson, C., Hiratsu, K., … Sundberg, E. (2010). The Arabidopsis thaliana STYLISH1 Protein Acts as a Transcriptional Activator Regulating Auxin Biosynthesis. The Plant Cell, 22(2), 349-363. doi:10.1105/tpc.108.064816 es_ES
dc.description.references Eklund, D. M., Thelander, M., Landberg, K., Staldal, V., Nilsson, A., Johansson, M., … Sundberg, E. (2010). Homologues of the Arabidopsis thaliana SHI/STY/LRP1 genes control auxin biosynthesis and affect growth and development in the moss Physcomitrella patens. Development, 137(8), 1275-1284. doi:10.1242/dev.039594 es_ES
dc.description.references Ferrándiz, C., & Fourquin, C. (2013). Role of the FUL–SHP network in the evolution of fruit morphology and function. Journal of Experimental Botany, 65(16), 4505-4513. doi:10.1093/jxb/ert479 es_ES
dc.description.references Fourquin, C., & Ferrándiz, C. (2012). Functional analyses of AGAMOUS family members in Nicotiana benthamiana clarify the evolution of early and late roles of C-function genes in eudicots. The Plant Journal, 71(6), 990-1001. doi:10.1111/j.1365-313x.2012.05046.x es_ES
dc.description.references Fourquin, C., & Ferrándiz, C. (2014). The essential role of NGATHA genes in style and stigma specification is widely conserved across eudicots. New Phytologist, 202(3), 1001-1013. doi:10.1111/nph.12703 es_ES
dc.description.references Fourquin, C., Primo, A., Martínez-Fernández, I., Huet-Trujillo, E., & Ferrándiz, C. (2014). The CRC orthologue from Pisum sativum shows conserved functions in carpel morphogenesis and vascular development. Annals of Botany, 114(7), 1535-1544. doi:10.1093/aob/mcu129 es_ES
dc.description.references Fourquin, C., Vinauger-Douard, M., Chambrier, P., Berne-Dedieu, A., & Scutt, C. P. (2007). Functional Conservation between CRABS CLAW Orthologues from Widely Diverged Angiosperms. Annals of Botany, 100(3), 651-657. doi:10.1093/aob/mcm136 es_ES
dc.description.references Fourquin, C., Vinauger-Douard, M., Fogliani, B., Dumas, C., & Scutt, C. P. (2005). Evidence that CRABS CLAW and TOUSLED have conserved their roles in carpel development since the ancestor of the extant angiosperms. Proceedings of the National Academy of Sciences, 102(12), 4649-4654. doi:10.1073/pnas.0409577102 es_ES
dc.description.references Fridborg, I., Kuusk, S., Robertson, M., & Sundberg, E. (2001). The Arabidopsis Protein SHI Represses Gibberellin Responses in Arabidopsis and Barley. Plant Physiology, 127(3), 937-948. doi:10.1104/pp.010388 es_ES
dc.description.references Gremski, K., Ditta, G., & Yanofsky, M. F. (2007). The HECATE genes regulate female reproductive tract development in Arabidopsis thaliana. Development, 134(20), 3593-3601. doi:10.1242/dev.011510 es_ES
dc.description.references Heijmans, K., Ament, K., Rijpkema, A. S., Zethof, J., Wolters-Arts, M., Gerats, T., & Vandenbussche, M. (2012). Redefining C and D in the Petunia ABC. The Plant Cell, 24(6), 2305-2317. doi:10.1105/tpc.112.097030 es_ES
dc.description.references Ishikawa, M., Ohmori, Y., Tanaka, W., Hirabayashi, C., Murai, K., Ogihara, Y., … Hirano, H.-Y. (2009). The spatial expression patterns of DROOPING LEAF orthologs suggest a conserved function in grasses. Genes & Genetic Systems, 84(2), 137-146. doi:10.1266/ggs.84.137 es_ES
dc.description.references Islam, M. A., Lütken, H., Haugslien, S., Blystad, D.-R., Torre, S., Rolcik, J., … Clarke, J. L. (2013). Overexpression of the AtSHI Gene in Poinsettia, Euphorbia pulcherrima, Results in Compact Plants. PLoS ONE, 8(1), e53377. doi:10.1371/journal.pone.0053377 es_ES
dc.description.references Kim, S.-G., Lee, S., Kim, Y.-S., Yun, D.-J., Woo, J.-C., & Park, C.-M. (2010). Activation tagging of an Arabidopsis SHI-RELATED SEQUENCE gene produces abnormal anther dehiscence and floral development. Plant Molecular Biology, 74(4-5), 337-351. doi:10.1007/s11103-010-9677-5 es_ES
dc.description.references Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution, 33(7), 1870-1874. doi:10.1093/molbev/msw054 es_ES
dc.description.references Kuusk, S., Sohlberg, J. J., Magnus Eklund, D., & Sundberg, E. (2006). Functionally redundantSHIfamily genes regulate Arabidopsis gynoecium development in a dose-dependent manner. The Plant Journal, 47(1), 99-111. doi:10.1111/j.1365-313x.2006.02774.x es_ES
dc.description.references Larsson, E., Franks, R. G., & Sundberg, E. (2013). Auxin and the Arabidopsis thaliana gynoecium. Journal of Experimental Botany, 64(9), 2619-2627. doi:10.1093/jxb/ert099 es_ES
dc.description.references Larsson, E., Roberts, C. J., Claes, A. R., Franks, R. G., & Sundberg, E. (2014). Polar Auxin Transport Is Essential for Medial versus Lateral Tissue Specification and Vascular-Mediated Valve Outgrowth in Arabidopsis Gynoecia. Plant Physiology, 166(4), 1998-2012. doi:10.1104/pp.114.245951 es_ES
dc.description.references Lee, J.-Y. (2005). Recruitment of CRABS CLAW to promote nectary development within the eudicot clade. Development, 132(22), 5021-5032. doi:10.1242/dev.02067 es_ES
dc.description.references Marsch-Martínez, N., & de Folter, S. (2016). Hormonal control of the development of the gynoecium. Current Opinion in Plant Biology, 29, 104-114. doi:10.1016/j.pbi.2015.12.006 es_ES
dc.description.references Martínez-Fernández, I., Sanchís, S., Marini, N., Balanzá, V., Ballester, P., Navarrete-Gómez, M., … Ferrándiz, C. (2014). The effect of NGATHA altered activity on auxin signaling pathways within the Arabidopsis gynoecium. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00210 es_ES
dc.description.references Morris, A. L., MacArthur, M. W., Hutchinson, E. G., & Thornton, J. M. (1992). Stereochemical quality of protein structure coordinates. Proteins: Structure, Function, and Genetics, 12(4), 345-364. doi:10.1002/prot.340120407 es_ES
dc.description.references Moubayidin, L., & Østergaard, L. (2014). Dynamic Control of Auxin Distribution Imposes a Bilateral-to-Radial Symmetry Switch during Gynoecium Development. Current Biology, 24(22), 2743-2748. doi:10.1016/j.cub.2014.09.080 es_ES
dc.description.references Ó’Maoiléidigh, D. S., Graciet, E., & Wellmer, F. (2013). Gene networks controllingArabidopsis thalianaflower development. New Phytologist, 201(1), 16-30. doi:10.1111/nph.12444 es_ES
dc.description.references Orashakova, S., Lange, M., Lange, S., Wege, S., & Becker, A. (2009). TheCRABS CLAWortholog from California poppy (Eschscholzia californica,Papaveraceae), EcCRC, is involved in floral meristem termination, gynoecium differentiation and ovule initiation. The Plant Journal, 58(4), 682-693. doi:10.1111/j.1365-313x.2009.03807.x es_ES
dc.description.references Pabón-Mora, N., Ambrose, B. A., & Litt, A. (2012). Poppy APETALA1/FRUITFULL Orthologs Control Flowering Time, Branching, Perianth Identity, and Fruit Development. Plant Physiology, 158(4), 1685-1704. doi:10.1104/pp.111.192104 es_ES
dc.description.references Pabón-Mora, N., Wong, G. K.-S., & Ambrose, B. A. (2014). Evolution of fruit development genes in flowering plants. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00300 es_ES
dc.description.references Pan, I. L., McQuinn, R., Giovannoni, J. J., & Irish, V. F. (2010). Functional diversification of AGAMOUS lineage genes in regulating tomato flower and fruit development. Journal of Experimental Botany, 61(6), 1795-1806. doi:10.1093/jxb/erq046 es_ES
dc.description.references Pfannebecker, K. C., Lange, M., Rupp, O., & Becker, A. (2016). An Evolutionary Framework for Carpel Developmental Control Genes. Molecular Biology and Evolution, msw229. doi:10.1093/molbev/msw229 es_ES
dc.description.references Pfannebecker, K. C., Lange, M., Rupp, O., & Becker, A. (2017). Seed plant specific gene lineages involved in carpel development. Molecular Biology and Evolution, msw297. doi:10.1093/molbev/msw297 es_ES
dc.description.references Ratcliff, F., Martin-Hernandez, A. M., & Baulcombe, D. C. (2008). Technical Advance: Tobacco rattle virus as a vector for analysis of gene function by silencing. The Plant Journal, 25(2), 237-245. doi:10.1046/j.0960-7412.2000.00942.x es_ES
dc.description.references Reyes-Olalde, J. I., Zuñiga-Mayo, V. M., Chávez Montes, R. A., Marsch-Martínez, N., & de Folter, S. (2013). Inside the gynoecium: at the carpel margin. Trends in Plant Science, 18(11), 644-655. doi:10.1016/j.tplants.2013.08.002 es_ES
dc.description.references Sohlberg, J. J., Myrenås, M., Kuusk, S., Lagercrantz, U., Kowalczyk, M., Sandberg, G., & Sundberg, E. (2006). STY1regulates auxin homeostasis and affects apical-basal patterning of the Arabidopsis gynoecium. The Plant Journal, 47(1), 112-123. doi:10.1111/j.1365-313x.2006.02775.x es_ES
dc.description.references Ståldal, V., Cierlik, I., Chen, S., Landberg, K., Baylis, T., Myrenås, M., … Sundberg, E. (2012). The Arabidopsis thaliana transcriptional activator STYLISH1 regulates genes affecting stamen development, cell expansion and timing of flowering. Plant Molecular Biology, 78(6), 545-559. doi:10.1007/s11103-012-9888-z es_ES
dc.description.references Ståldal, V., Sohlberg, J. J., Eklund, D. M., Ljung, K., & Sundberg, E. (2008). Auxin can act independently ofCRC,LUG,SEU,SPTandSTY1in style development but not apical-basal patterning of theArabidopsisgynoecium. New Phytologist, 180(4), 798-808. doi:10.1111/j.1469-8137.2008.02625.x es_ES
dc.description.references Sundberg, E., & Ostergaard, L. (2009). Distinct and Dynamic Auxin Activities During Reproductive Development. Cold Spring Harbor Perspectives in Biology, 1(6), a001628-a001628. doi:10.1101/cshperspect.a001628 es_ES
dc.description.references Tian, C., & Jiao, Y. (2015). A systems approach to understand shoot branching. Current Plant Biology, 3-4, 13-19. doi:10.1016/j.cpb.2015.08.001 es_ES
dc.description.references Trigueros, M., Navarrete-Gómez, M., Sato, S., Christensen, S. K., Pelaz, S., Weigel, D., … Ferrándiz, C. (2009). The NGATHA Genes Direct Style Development in the Arabidopsis Gynoecium. The Plant Cell, 21(5), 1394-1409. doi:10.1105/tpc.109.065508 es_ES
dc.description.references Vialette-Guiraud, A. C. M., Andres-Robin, A., Chambrier, P., Tavares, R., & Scutt, C. P. (2016). The analysis of Gene Regulatory Networks in plant evo-devo. Journal of Experimental Botany, 67(9), 2549-2563. doi:10.1093/jxb/erw119 es_ES
dc.description.references Wege, S., Scholz, A., Gleissberg, S., & Becker, A. (2007). Highly Efficient Virus-induced Gene Silencing (VIGS) in California Poppy (Eschscholzia californica): An Evaluation of VIGS as a Strategy to Obtain Functional Data from Non-model Plants. Annals of Botany, 100(3), 641-649. doi:10.1093/aob/mcm118 es_ES
dc.description.references Yamada, T., Yokota, S., Hirayama, Y., Imaichi, R., Kato, M., & Gasser, C. S. (2011). Ancestral expression patterns and evolutionary diversification of YABBY genes in angiosperms. The Plant Journal, 67(1), 26-36. doi:10.1111/j.1365-313x.2011.04570.x es_ES
dc.description.references Yamaguchi, T., Nagasawa, N., Kawasaki, S., Matsuoka, M., Nagato, Y., & Hirano, H.-Y. (2004). The YABBY Gene DROOPING LEAF Regulates Carpel Specification and Midrib Development in Oryza sativa. The Plant Cell, 16(2), 500-509. doi:10.1105/tpc.018044 es_ES
dc.description.references Yellina, A. L., Orashakova, S., Lange, S., Erdmann, R., Leebens-Mack, J., & Becker, A. (2010). Floral homeotic C function genes repress specific B function genes in the carpel whorl of the basal eudicot California poppy (Eschscholzia californica). EvoDevo, 1(1), 13. doi:10.1186/2041-9139-1-13 es_ES
dc.description.references Youssef, H. M., Eggert, K., Koppolu, R., Alqudah, A. M., Poursarebani, N., Fazeli, A., … Schnurbusch, T. (2016). VRS2 regulates hormone-mediated inflorescence patterning in barley. Nature Genetics, 49(1), 157-161. doi:10.1038/ng.3717 es_ES
dc.description.references Yuo, T., Yamashita, Y., Kanamori, H., Matsumoto, T., Lundqvist, U., Sato, K., … Taketa, S. (2012). A SHORT INTERNODES (SHI) family transcription factor gene regulates awn elongation and pistil morphology in barley. Journal of Experimental Botany, 63(14), 5223-5232. doi:10.1093/jxb/ers182 es_ES
dc.description.references Zawaski, C., Kadmiel, M., Ma, C., Gai, Y., Jiang, X., Strauss, S. H., & Busov, V. B. (2011). SHORT INTERNODES-like genes regulate shoot growth and xylem proliferation in Populus. New Phytologist, 191(3), 678-691. doi:10.1111/j.1469-8137.2011.03742.x es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem