- -

The Role of SHI/STY/SRS Genes in Organ Growth and Carpel Development Is Conserved in the Distant Eudicot Species Arabidopsis thaliana and Nicotiana benthamiana

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The Role of SHI/STY/SRS Genes in Organ Growth and Carpel Development Is Conserved in the Distant Eudicot Species Arabidopsis thaliana and Nicotiana benthamiana

Mostrar el registro completo del ítem

Gomariz, A.; Sánchez-Gerschon, V.; Fourquin, C.; Ferrandiz Maestre, C. (2017). The Role of SHI/STY/SRS Genes in Organ Growth and Carpel Development Is Conserved in the Distant Eudicot Species Arabidopsis thaliana and Nicotiana benthamiana. Frontiers in Plant Science. 8:1-17. https://doi.org/10.3389/fpls.2017.00814

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/148879

Ficheros en el ítem

Metadatos del ítem

Título: The Role of SHI/STY/SRS Genes in Organ Growth and Carpel Development Is Conserved in the Distant Eudicot Species Arabidopsis thaliana and Nicotiana benthamiana
Autor: Gomariz, A Sánchez-Gerschon, Verónica Fourquin, Chloe FERRANDIZ MAESTRE, CRISTINA
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Fecha difusión:
Resumen:
[EN] Carpels are a distinctive feature of angiosperms, the ovule-bearing female reproductive organs that endow them with multiple selective advantages likely linked to the evolutionary success of flowering plants. Gene ...[+]
Palabras clave: Carpel evolution , Eschscholzia californica , Gynoecium , Nicotiana benthamiana , Style and stigma, Virus-induced gene silencing (VIGS) , SHI STY SRS factors
Derechos de uso: Reconocimiento (by)
Fuente:
Frontiers in Plant Science. (eissn: 1664-462X )
DOI: 10.3389/fpls.2017.00814
Editorial:
Frontiers Media SA
Versión del editor: https://doi.org/10.3389/fpls.2017.00814
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//BIO2012-32902/ES/UN CODIGO COMBINATORIAL DE COMPLEJOS TRANSCRIPCIONALES QUE REGULAN LA MORFOLOGIA DEL GINECEO Y EL FRUTO/
info:eu-repo/grantAgreement/GVA//ACIF%2F2013%2F044/
info:eu-repo/grantAgreement/MINECO//BIO2015-64531-R/ES/EL CONTROL DE LA PARADA GLOBAL DE LA PROLIFERACION EN PLANTAS MONOCARPICAS: DISEÑO DE ESTRATEGIAS BIOTECNOLOGICAS PARA AUMENTAR LA PRODUCCION EN CULTIVOS ANUALES/
Agradecimientos:
This work was supported by the Spanish MINECO/FEDER grants no BIO2012-32902 and BIO2015-64531-R to CFe. AG-F was supported by a predoctoral contract of the Generalitat Valenciana (ACIF/2013/044). We acknowledge support of ...[+]
Tipo: Artículo

References

Alvarez, J. P., Goldshmidt, A., Efroni, I., Bowman, J. L., & Eshed, Y. (2009). The NGATHA Distal Organ Development Genes Are Essential for Style Specification in Arabidopsis. The Plant Cell, 21(5), 1373-1393. doi:10.1105/tpc.109.065482

ALVAREZBUYLLA, E., BENITEZ, M., DAVILA, E., CHAOS, A., ESPINOSASOTO, C., & PADILLALONGORIA, P. (2007). Gene regulatory network models for plant development. Current Opinion in Plant Biology, 10(1), 83-91. doi:10.1016/j.pbi.2006.11.008

Ballester, P., & Ferrándiz, C. (2017). Shattering fruits: variations on a dehiscent theme. Current Opinion in Plant Biology, 35, 68-75. doi:10.1016/j.pbi.2016.11.008 [+]
Alvarez, J. P., Goldshmidt, A., Efroni, I., Bowman, J. L., & Eshed, Y. (2009). The NGATHA Distal Organ Development Genes Are Essential for Style Specification in Arabidopsis. The Plant Cell, 21(5), 1373-1393. doi:10.1105/tpc.109.065482

ALVAREZBUYLLA, E., BENITEZ, M., DAVILA, E., CHAOS, A., ESPINOSASOTO, C., & PADILLALONGORIA, P. (2007). Gene regulatory network models for plant development. Current Opinion in Plant Biology, 10(1), 83-91. doi:10.1016/j.pbi.2006.11.008

Ballester, P., & Ferrándiz, C. (2017). Shattering fruits: variations on a dehiscent theme. Current Opinion in Plant Biology, 35, 68-75. doi:10.1016/j.pbi.2016.11.008

Bombarely, A., Rosli, H. G., Vrebalov, J., Moffett, P., Mueller, L. A., & Martin, G. B. (2012). A Draft Genome Sequence of Nicotiana benthamiana to Enhance Molecular Plant-Microbe Biology Research. Molecular Plant-Microbe Interactions®, 25(12), 1523-1530. doi:10.1094/mpmi-06-12-0148-ta

Bowman, J. L., Smyth, D. R., & Meyerowitz, E. M. (1989). Genes directing flower development in Arabidopsis. The Plant Cell, 1(1), 37-52. doi:10.1105/tpc.1.1.37

Bradley, D., Carpenter, R., Sommer, H., Hartley, N., & Coen, E. (1993). Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of antirrhinum. Cell, 72(1), 85-95. doi:10.1016/0092-8674(93)90052-r

Chávez Montes, R. A., Herrera-Ubaldo, H., Serwatowska, J., & de Folter, S. (2015). Towards a comprehensive and dynamic gynoecium gene regulatory network. Current Plant Biology, 3-4, 3-12. doi:10.1016/j.cpb.2015.08.002

Clemente, T. (s. f.). Nicotiana (Nicotiana tobaccum, Nicotiana benthamiana). Agrobacterium Protocols, 143-154. doi:10.1385/1-59745-130-4:143

Clough, S. J., & Bent, A. F. (1998). Floral dip: a simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana. The Plant Journal, 16(6), 735-743. doi:10.1046/j.1365-313x.1998.00343.x

Colombo, M., Brambilla, V., Marcheselli, R., Caporali, E., Kater, M. M., & Colombo, L. (2010). A new role for the SHATTERPROOF genes during Arabidopsis gynoecium development. Developmental Biology, 337(2), 294-302. doi:10.1016/j.ydbio.2009.10.043

Crawford, B. C. W., Ditta, G., & Yanofsky, M. F. (2007). The NTT Gene Is Required for Transmitting-Tract Development in Carpels of Arabidopsis thaliana. Current Biology, 17(13), 1101-1108. doi:10.1016/j.cub.2007.05.079

Crawford, B. C. W., & Yanofsky, M. F. (2011). HALF FILLED promotes reproductive tract development and fertilization efficiency in Arabidopsis thaliana. Development, 138(14), 2999-3009. doi:10.1242/dev.067793

Curtis, M. D., & Grossniklaus, U. (2003). A Gateway Cloning Vector Set for High-Throughput Functional Analysis of Genes in Planta. Plant Physiology, 133(2), 462-469. doi:10.1104/pp.103.027979

Davidson, E. H., & Levine, M. S. (2008). Properties of developmental gene regulatory networks. Proceedings of the National Academy of Sciences, 105(51), 20063-20066. doi:10.1073/pnas.0806007105

Davies, B., Motte, P., Keck, E., Saedler, H., Sommer, H., & Schwarz-Sommer, Z. (1999). PLENA and FARINELLI: redundancy and regulatory interactions between two Antirrhinum MADS-box factors controlling flower development. The EMBO Journal, 18(14), 4023-4034. doi:10.1093/emboj/18.14.4023

Davila-Velderrain, J., Martinez-Garcia, J. C., & Alvarez-Buylla, E. R. (2016). Dynamic network modelling to understand flowering transition and floral patterning. Journal of Experimental Botany, 67(9), 2565-2572. doi:10.1093/jxb/erw123

De Lucas, M., & Brady, S. M. (2013). Gene regulatory networks in the Arabidopsis root. Current Opinion in Plant Biology, 16(1), 50-55. doi:10.1016/j.pbi.2012.10.007

Dreni, L., Pilatone, A., Yun, D., Erreni, S., Pajoro, A., Caporali, E., … Kater, M. M. (2011). Functional Analysis of All AGAMOUS Subfamily Members in Rice Reveals Their Roles in Reproductive Organ Identity Determination and Meristem Determinacy. The Plant Cell, 23(8), 2850-2863. doi:10.1105/tpc.111.087007

Eklund, D. M., Cierlik, I., Ståldal, V., Claes, A. R., Vestman, D., Chandler, J., & Sundberg, E. (2011). Expression of Arabidopsis SHORT INTERNODES/STYLISH Family Genes in Auxin Biosynthesis Zones of Aerial Organs Is Dependent on a GCC Box-Like Regulatory Element. Plant Physiology, 157(4), 2069-2080. doi:10.1104/pp.111.182253

Eklund, D. M., Ståldal, V., Valsecchi, I., Cierlik, I., Eriksson, C., Hiratsu, K., … Sundberg, E. (2010). The Arabidopsis thaliana STYLISH1 Protein Acts as a Transcriptional Activator Regulating Auxin Biosynthesis. The Plant Cell, 22(2), 349-363. doi:10.1105/tpc.108.064816

Eklund, D. M., Thelander, M., Landberg, K., Staldal, V., Nilsson, A., Johansson, M., … Sundberg, E. (2010). Homologues of the Arabidopsis thaliana SHI/STY/LRP1 genes control auxin biosynthesis and affect growth and development in the moss Physcomitrella patens. Development, 137(8), 1275-1284. doi:10.1242/dev.039594

Ferrándiz, C., & Fourquin, C. (2013). Role of the FUL–SHP network in the evolution of fruit morphology and function. Journal of Experimental Botany, 65(16), 4505-4513. doi:10.1093/jxb/ert479

Fourquin, C., & Ferrándiz, C. (2012). Functional analyses of AGAMOUS family members in Nicotiana benthamiana clarify the evolution of early and late roles of C-function genes in eudicots. The Plant Journal, 71(6), 990-1001. doi:10.1111/j.1365-313x.2012.05046.x

Fourquin, C., & Ferrándiz, C. (2014). The essential role of NGATHA genes in style and stigma specification is widely conserved across eudicots. New Phytologist, 202(3), 1001-1013. doi:10.1111/nph.12703

Fourquin, C., Primo, A., Martínez-Fernández, I., Huet-Trujillo, E., & Ferrándiz, C. (2014). The CRC orthologue from Pisum sativum shows conserved functions in carpel morphogenesis and vascular development. Annals of Botany, 114(7), 1535-1544. doi:10.1093/aob/mcu129

Fourquin, C., Vinauger-Douard, M., Chambrier, P., Berne-Dedieu, A., & Scutt, C. P. (2007). Functional Conservation between CRABS CLAW Orthologues from Widely Diverged Angiosperms. Annals of Botany, 100(3), 651-657. doi:10.1093/aob/mcm136

Fourquin, C., Vinauger-Douard, M., Fogliani, B., Dumas, C., & Scutt, C. P. (2005). Evidence that CRABS CLAW and TOUSLED have conserved their roles in carpel development since the ancestor of the extant angiosperms. Proceedings of the National Academy of Sciences, 102(12), 4649-4654. doi:10.1073/pnas.0409577102

Fridborg, I., Kuusk, S., Robertson, M., & Sundberg, E. (2001). The Arabidopsis Protein SHI Represses Gibberellin Responses in Arabidopsis and Barley. Plant Physiology, 127(3), 937-948. doi:10.1104/pp.010388

Gremski, K., Ditta, G., & Yanofsky, M. F. (2007). The HECATE genes regulate female reproductive tract development in Arabidopsis thaliana. Development, 134(20), 3593-3601. doi:10.1242/dev.011510

Heijmans, K., Ament, K., Rijpkema, A. S., Zethof, J., Wolters-Arts, M., Gerats, T., & Vandenbussche, M. (2012). Redefining C and D in the Petunia ABC. The Plant Cell, 24(6), 2305-2317. doi:10.1105/tpc.112.097030

Ishikawa, M., Ohmori, Y., Tanaka, W., Hirabayashi, C., Murai, K., Ogihara, Y., … Hirano, H.-Y. (2009). The spatial expression patterns of DROOPING LEAF orthologs suggest a conserved function in grasses. Genes & Genetic Systems, 84(2), 137-146. doi:10.1266/ggs.84.137

Islam, M. A., Lütken, H., Haugslien, S., Blystad, D.-R., Torre, S., Rolcik, J., … Clarke, J. L. (2013). Overexpression of the AtSHI Gene in Poinsettia, Euphorbia pulcherrima, Results in Compact Plants. PLoS ONE, 8(1), e53377. doi:10.1371/journal.pone.0053377

Kim, S.-G., Lee, S., Kim, Y.-S., Yun, D.-J., Woo, J.-C., & Park, C.-M. (2010). Activation tagging of an Arabidopsis SHI-RELATED SEQUENCE gene produces abnormal anther dehiscence and floral development. Plant Molecular Biology, 74(4-5), 337-351. doi:10.1007/s11103-010-9677-5

Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution, 33(7), 1870-1874. doi:10.1093/molbev/msw054

Kuusk, S., Sohlberg, J. J., Magnus Eklund, D., & Sundberg, E. (2006). Functionally redundantSHIfamily genes regulate Arabidopsis gynoecium development in a dose-dependent manner. The Plant Journal, 47(1), 99-111. doi:10.1111/j.1365-313x.2006.02774.x

Larsson, E., Franks, R. G., & Sundberg, E. (2013). Auxin and the Arabidopsis thaliana gynoecium. Journal of Experimental Botany, 64(9), 2619-2627. doi:10.1093/jxb/ert099

Larsson, E., Roberts, C. J., Claes, A. R., Franks, R. G., & Sundberg, E. (2014). Polar Auxin Transport Is Essential for Medial versus Lateral Tissue Specification and Vascular-Mediated Valve Outgrowth in Arabidopsis Gynoecia. Plant Physiology, 166(4), 1998-2012. doi:10.1104/pp.114.245951

Lee, J.-Y. (2005). Recruitment of CRABS CLAW to promote nectary development within the eudicot clade. Development, 132(22), 5021-5032. doi:10.1242/dev.02067

Marsch-Martínez, N., & de Folter, S. (2016). Hormonal control of the development of the gynoecium. Current Opinion in Plant Biology, 29, 104-114. doi:10.1016/j.pbi.2015.12.006

Martínez-Fernández, I., Sanchís, S., Marini, N., Balanzá, V., Ballester, P., Navarrete-Gómez, M., … Ferrándiz, C. (2014). The effect of NGATHA altered activity on auxin signaling pathways within the Arabidopsis gynoecium. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00210

Morris, A. L., MacArthur, M. W., Hutchinson, E. G., & Thornton, J. M. (1992). Stereochemical quality of protein structure coordinates. Proteins: Structure, Function, and Genetics, 12(4), 345-364. doi:10.1002/prot.340120407

Moubayidin, L., & Østergaard, L. (2014). Dynamic Control of Auxin Distribution Imposes a Bilateral-to-Radial Symmetry Switch during Gynoecium Development. Current Biology, 24(22), 2743-2748. doi:10.1016/j.cub.2014.09.080

Ó’Maoiléidigh, D. S., Graciet, E., & Wellmer, F. (2013). Gene networks controllingArabidopsis thalianaflower development. New Phytologist, 201(1), 16-30. doi:10.1111/nph.12444

Orashakova, S., Lange, M., Lange, S., Wege, S., & Becker, A. (2009). TheCRABS CLAWortholog from California poppy (Eschscholzia californica,Papaveraceae), EcCRC, is involved in floral meristem termination, gynoecium differentiation and ovule initiation. The Plant Journal, 58(4), 682-693. doi:10.1111/j.1365-313x.2009.03807.x

Pabón-Mora, N., Ambrose, B. A., & Litt, A. (2012). Poppy APETALA1/FRUITFULL Orthologs Control Flowering Time, Branching, Perianth Identity, and Fruit Development. Plant Physiology, 158(4), 1685-1704. doi:10.1104/pp.111.192104

Pabón-Mora, N., Wong, G. K.-S., & Ambrose, B. A. (2014). Evolution of fruit development genes in flowering plants. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00300

Pan, I. L., McQuinn, R., Giovannoni, J. J., & Irish, V. F. (2010). Functional diversification of AGAMOUS lineage genes in regulating tomato flower and fruit development. Journal of Experimental Botany, 61(6), 1795-1806. doi:10.1093/jxb/erq046

Pfannebecker, K. C., Lange, M., Rupp, O., & Becker, A. (2016). An Evolutionary Framework for Carpel Developmental Control Genes. Molecular Biology and Evolution, msw229. doi:10.1093/molbev/msw229

Pfannebecker, K. C., Lange, M., Rupp, O., & Becker, A. (2017). Seed plant specific gene lineages involved in carpel development. Molecular Biology and Evolution, msw297. doi:10.1093/molbev/msw297

Ratcliff, F., Martin-Hernandez, A. M., & Baulcombe, D. C. (2008). Technical Advance: Tobacco rattle virus as a vector for analysis of gene function by silencing. The Plant Journal, 25(2), 237-245. doi:10.1046/j.0960-7412.2000.00942.x

Reyes-Olalde, J. I., Zuñiga-Mayo, V. M., Chávez Montes, R. A., Marsch-Martínez, N., & de Folter, S. (2013). Inside the gynoecium: at the carpel margin. Trends in Plant Science, 18(11), 644-655. doi:10.1016/j.tplants.2013.08.002

Sohlberg, J. J., Myrenås, M., Kuusk, S., Lagercrantz, U., Kowalczyk, M., Sandberg, G., & Sundberg, E. (2006). STY1regulates auxin homeostasis and affects apical-basal patterning of the Arabidopsis gynoecium. The Plant Journal, 47(1), 112-123. doi:10.1111/j.1365-313x.2006.02775.x

Ståldal, V., Cierlik, I., Chen, S., Landberg, K., Baylis, T., Myrenås, M., … Sundberg, E. (2012). The Arabidopsis thaliana transcriptional activator STYLISH1 regulates genes affecting stamen development, cell expansion and timing of flowering. Plant Molecular Biology, 78(6), 545-559. doi:10.1007/s11103-012-9888-z

Ståldal, V., Sohlberg, J. J., Eklund, D. M., Ljung, K., & Sundberg, E. (2008). Auxin can act independently ofCRC,LUG,SEU,SPTandSTY1in style development but not apical-basal patterning of theArabidopsisgynoecium. New Phytologist, 180(4), 798-808. doi:10.1111/j.1469-8137.2008.02625.x

Sundberg, E., & Ostergaard, L. (2009). Distinct and Dynamic Auxin Activities During Reproductive Development. Cold Spring Harbor Perspectives in Biology, 1(6), a001628-a001628. doi:10.1101/cshperspect.a001628

Tian, C., & Jiao, Y. (2015). A systems approach to understand shoot branching. Current Plant Biology, 3-4, 13-19. doi:10.1016/j.cpb.2015.08.001

Trigueros, M., Navarrete-Gómez, M., Sato, S., Christensen, S. K., Pelaz, S., Weigel, D., … Ferrándiz, C. (2009). The NGATHA Genes Direct Style Development in the Arabidopsis Gynoecium. The Plant Cell, 21(5), 1394-1409. doi:10.1105/tpc.109.065508

Vialette-Guiraud, A. C. M., Andres-Robin, A., Chambrier, P., Tavares, R., & Scutt, C. P. (2016). The analysis of Gene Regulatory Networks in plant evo-devo. Journal of Experimental Botany, 67(9), 2549-2563. doi:10.1093/jxb/erw119

Wege, S., Scholz, A., Gleissberg, S., & Becker, A. (2007). Highly Efficient Virus-induced Gene Silencing (VIGS) in California Poppy (Eschscholzia californica): An Evaluation of VIGS as a Strategy to Obtain Functional Data from Non-model Plants. Annals of Botany, 100(3), 641-649. doi:10.1093/aob/mcm118

Yamada, T., Yokota, S., Hirayama, Y., Imaichi, R., Kato, M., & Gasser, C. S. (2011). Ancestral expression patterns and evolutionary diversification of YABBY genes in angiosperms. The Plant Journal, 67(1), 26-36. doi:10.1111/j.1365-313x.2011.04570.x

Yamaguchi, T., Nagasawa, N., Kawasaki, S., Matsuoka, M., Nagato, Y., & Hirano, H.-Y. (2004). The YABBY Gene DROOPING LEAF Regulates Carpel Specification and Midrib Development in Oryza sativa. The Plant Cell, 16(2), 500-509. doi:10.1105/tpc.018044

Yellina, A. L., Orashakova, S., Lange, S., Erdmann, R., Leebens-Mack, J., & Becker, A. (2010). Floral homeotic C function genes repress specific B function genes in the carpel whorl of the basal eudicot California poppy (Eschscholzia californica). EvoDevo, 1(1), 13. doi:10.1186/2041-9139-1-13

Youssef, H. M., Eggert, K., Koppolu, R., Alqudah, A. M., Poursarebani, N., Fazeli, A., … Schnurbusch, T. (2016). VRS2 regulates hormone-mediated inflorescence patterning in barley. Nature Genetics, 49(1), 157-161. doi:10.1038/ng.3717

Yuo, T., Yamashita, Y., Kanamori, H., Matsumoto, T., Lundqvist, U., Sato, K., … Taketa, S. (2012). A SHORT INTERNODES (SHI) family transcription factor gene regulates awn elongation and pistil morphology in barley. Journal of Experimental Botany, 63(14), 5223-5232. doi:10.1093/jxb/ers182

Zawaski, C., Kadmiel, M., Ma, C., Gai, Y., Jiang, X., Strauss, S. H., & Busov, V. B. (2011). SHORT INTERNODES-like genes regulate shoot growth and xylem proliferation in Populus. New Phytologist, 191(3), 678-691. doi:10.1111/j.1469-8137.2011.03742.x

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem