- -

Metadiffusers: Deep-subwavelength sound diffusers

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Metadiffusers: Deep-subwavelength sound diffusers

Show simple item record

Files in this item

dc.contributor.author Jimenez, Noe es_ES
dc.contributor.author Cox, Trevor J. es_ES
dc.contributor.author Romero García, Vicente es_ES
dc.contributor.author Groby, J.P. es_ES
dc.date.accessioned 2020-07-30T03:34:49Z
dc.date.available 2020-07-30T03:34:49Z
dc.date.issued 2017-07-14 es_ES
dc.identifier.issn 2045-2322 es_ES
dc.identifier.uri http://hdl.handle.net/10251/148883
dc.description.abstract [EN] We present deep-subwavelength diffusing surfaces based on acoustic metamaterials, namely metadiffusers. These sound diffusers are rigidly backed slotted panels, with each slit being loaded by an array of Helmholtz resonators. Strong dispersion is produced in the slits and slow sound conditions are induced. Thus, the effective thickness of the panel is lengthened introducing its quarter wavelength resonance in the deep-subwavelength regime. By tuning the geometry of the metamaterial, the reflection coefficient of the panel can be tailored to obtain either a custom reflection phase, moderate or even perfect absorption. Using these concepts, we present ultra-thin diffusers where the geometry of the metadiffuser has been tuned to obtain surfaces with spatially dependent reflection coefficients having uniform magnitude Fourier transforms. Various designs are presented where, quadratic residue, primitive root and ternary sequence diffusers are mimicked by metadiffusers whose thickness are 1/46 to 1/20 times the design wavelength, i.e., between about a twentieth and a tenth of the thickness of traditional designs. Finally, a broadband metadiffuser panel of 3 cm thick was designed using optimization methods for frequencies ranging from 250 Hz to 2 kHz. es_ES
dc.description.sponsorship This article is based upon work from COST Action DENORMS - CA15125, supported by COST (European Cooperation in Science and Technology). The authors acknowledge financial support from the Metaudible Project No. ANR-13-BS09-0003, cofunded by ANR and FRAE. es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation COST/CA 15125 es_ES
dc.relation ANR/ANR-13-BS09-0003 es_ES
dc.relation.ispartof Scientific Reports es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Specular reflection es_ES
dc.subject Sonic crystals es_ES
dc.subject Phase gratings es_ES
dc.subject Absorption es_ES
dc.subject Resonators es_ES
dc.subject Propagation es_ES
dc.subject Inclusions es_ES
dc.subject Scattering es_ES
dc.subject Perfect es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Metadiffusers: Deep-subwavelength sound diffusers es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41598-017-05710-5 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular es_ES
dc.description.bibliographicCitation Jimenez, N.; Cox, TJ.; Romero García, V.; Groby, J. (2017). Metadiffusers: Deep-subwavelength sound diffusers. Scientific Reports. 7:1-12. https://doi.org/10.1038/s41598-017-05710-5 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41598-017-05710-5 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.identifier.pmid 28710374 es_ES
dc.identifier.pmcid PMC5511165 es_ES
dc.relation.pasarela S\343316 es_ES
dc.contributor.funder Agence Nationale de la Recherche, Francia es_ES
dc.contributor.funder European Cooperation in Science and Technology es_ES
dc.relation.references Cox, T. J. & D’Antonio, P. Acoustic absorbers and diffusers: theory, design and application, 3rd edn. (CRC Press, 2016). es_ES
dc.relation.references Cox, T. J. & Lam, Y. Prediction and evaluation of the scattering from quadratic residue diffusers. The Journal of the Acoustical Society of America 95, 297–305 (1994). es_ES
dc.relation.references Schröder, M. R. Diffuse sound reflection by maximum- length sequences. The Journal of the Acoustical Society of America 57, 149–150 (1975). es_ES
dc.relation.references Cox, T. J. & D’Antonio, P. Acoustic phase gratings for reduced specular reflection. Applied Acoustics 60, 167–186 (2000). es_ES
dc.relation.references Cox, T. & D’Antonio, P. Schroeder diffusers: A review. Building Acoustics 10, 1–32 (2003). es_ES
dc.relation.references Mechel, F. The wide-angle diffuser–a wide-angle absorber? Acta Acustica united with Acustica 81, 379–401 (1995). es_ES
dc.relation.references Jrvinen, A., Savioja, L. & Melkas, K. Numerical simulations of the modified schroeder diffuser structure. J. Acoust. Soc. Am 103, 3065 (1998). es_ES
dc.relation.references Hargreaves, J. & Cox, T. Improving the bass response of Schroeder diffusers. Proceedings of the Institute of Acoustics 25, 199–208 (2003). es_ES
dc.relation.references Hunecke, J. Schallstreuung und Schallabsorption von Oberfl: ahen aus mikroperforierten Streifen. Ph.D. thesis, University of Stuttgart (1997). es_ES
dc.relation.references Wu, T., Cox, T. J. & Lam, Y. A profiled structure with improved low frequency absorption. The Journal of the Acoustical Society of America 110, 3064–3070 (2001). es_ES
dc.relation.references DAntonio, P. Inventor. RPG Diffusor Systems, Inc., assignee. Planar binary amplitude diffusor. United States patent US 5,817,992. Jun 5 (1998). es_ES
dc.relation.references Xiao, L., Cox, T. J. & Avis, M. R. Active diffusers: some prototypes and 2D measurements. Journal of sound and vibration 285, 321–339 (2005). es_ES
dc.relation.references Redondo, J., Picó, R., Sánchez-Morcillo, V. J. & Woszczyk, W. Sound diffusers based on sonic crystals. The Journal of the Acoustical Society of America 134, 4412–4417 (2013). es_ES
dc.relation.references Redondo, J., Sánchez-Pérez, J., Blasco, X., Herrero, J. & Vorländer, M. Optimized sound diffusers based on sonic crystals using a multiobjective evolutionary algorithm. The Journal of the Acoustical Society of America 139, 2807–2814 (2016). es_ES
dc.relation.references Santillán, A. & Bozhevolnyi, S. I. Acoustic transparency and slow sound using detuned acoustic resonators. Phys. Rev. B 84, 064304 (2011). es_ES
dc.relation.references Ding, Y., Liu, Z., Qiu, C. & Shi, J. Metamaterial with simultaneously negative bulk modulus and mass density. Physical review letters 99, 093904 (2007). es_ES
dc.relation.references Yang, Z., Mei, J., Yang, M., Chan, N. & Sheng, P. Membrane-type acoustic metamaterial with negative dynamic mass. Phys. Rev. Lett. 101, 204301 (2008). es_ES
dc.relation.references Groby, J.-P., Duclos, A., Dazel, O., Boeckx, L. & Lauriks, W. Absorption of a rigid frame porous layer with periodic circular inclusions backed by a periodic grating. J. Acoust. Soc. Am. 129, 3035–3046 (2011). es_ES
dc.relation.references Lagarrigue, C., Groby, J., Tournat, V., Dazel, O. & Umnova, O. Absorption of sound by porous layers with embedded periodic arrays of resonant inclusions. J. Acoust. Soc. Am. 134, 4670–4680 (2013). es_ES
dc.relation.references Boutin, C. Acoustics of porous media with inner resonators. J. Acoust. Soc. Am. 134, 4717–4729 (2013). es_ES
dc.relation.references Groby, J.-P. et al. Enhancing the absorption properties of acoustic porous plates by periodically embedding Helmholtz resonators. J. Acoust. Soc. Am. 137, 273–280 (2015). es_ES
dc.relation.references Dupont, T., Leclaire, P., Sicot, O., Gong, X. L. & Panneton, R. Acoustic properties of air-saturated porous materials containing dead-end porosity. J Appl Phys 110, 094903 (2011). es_ES
dc.relation.references Leclaire, P., Umnova, O., Dupont, T. & Panneton, R. Acoustical properties of air-saturated porous material with periodically distributed dead-end poresa. J. Acoust. Soc. Am. 137, 1772–1782 (2015). es_ES
dc.relation.references Mei, J. et al. Dark acoustic metamaterials as super absorbers for low-frequency sound. Nat. Commun. 3, 756 (2012). es_ES
dc.relation.references Ma, G., Yang, M., Xiao, S., Yang, Z. & Sheng, P. Acoustic metasurface with hybrid resonances. Nat. Mater. 13, 873–878 (2014). es_ES
dc.relation.references Romero-García, V. et al. Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators. Sci. Rep. 6, 19519 (2016). es_ES
dc.relation.references Groby, J.-P., Huang, W., Lardeau, A. & Aurégan, Y. The use of slow waves to design simple sound absorbing materials. J. Appl. Phys. 117, 124903 (2015). es_ES
dc.relation.references Groby, J.-P., Pommier, R. & Aurégan, Y. Use of slow sound to design perfect and broadband passive sound absorbing materials. J. Acoust. Soc. Am. 139, 1660–1671 (2016). es_ES
dc.relation.references Li, Y. & Assouar, B. M. Acoustic metasurface-based perfect absorber with deep subwavelength thickness. Appl. Phys. Lett. 108, 063502 (2016). es_ES
dc.relation.references Romero-García, V., Theocharis, G., Richoux, O. & Pagneux, V. Use of complex frequency plane to design broadband and sub-wavelength absorbers. The Journal of the Acoustical Society of America 139, 3395–3403 (2016). es_ES
dc.relation.references Jiménez, N., Huang, W., Romero-García, V., Pagneux, V. & Groby, J.-P. Ultra-thin metamaterial for perfect and quasi-omnidirectional sound absorption. Applied Physics Letters 109, 121902 (2016). es_ES
dc.relation.references Jiménez, N., Romero-García, V., Pagneux, V. & Groby, J.-P. Quasiperfect absorption by subwavelength acoustic panels in transmission using accumulation of resonances due to slow sound. Phys. Rev. B 95, 014205 (2017). es_ES
dc.relation.references Cox, T. J., Angus, J. A. & D’Antonio, P. Ternary and quadriphase sequence diffusers. The Journal of the Acoustical Society of America 119, 310–319 (2006). es_ES
dc.relation.references Powell, M. J. A fast algorithm for nonlinearly constrained optimization calculations. In Numerical analysis, 144–157 (Springer, 1978). es_ES
dc.relation.references Schroeder, M. Phase gratings with suppressed specular reflection. Acta Acustica united with Acustica 81, 364–369 (1995). es_ES
dc.relation.references Burresi, M. et al. Bright-white beetle scales optimise multiple scattering of light. Scientific reports 4, 6075 (2014). es_ES
dc.relation.references Clare, E. L. & Holderied, M. W. Acoustic shadows help gleaning bats find prey, but may be defeated by prey acoustic camouflage on rough surfaces. eLife 4, e07404 (2015). es_ES
dc.relation.references Stinson, M. R. The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross-sectional shape. J. Acoust. Soc. Am. 89, 550–558 (1991). es_ES
dc.relation.references Theocharis, G., Richoux, O., García, V. R., Merkel, A. & Tournat, V. Limits of slow sound propagation and transparency in lossy, locally resonant periodic structures. New J. Phys. 16, 093017 (2014). es_ES
dc.relation.references Kergomard, J. & Garcia, A. Simple discontinuities in acoustic waveguides at low frequencies: critical analysis and formulae. J. Sound Vib. 114, 465–479 (1987). es_ES
dc.relation.references Dubos, V. et al. Theory of sound propagation in a duct with a branched tube using modal decomposition. Acta Acustica united with Acustica 85, 153–169 (1999). es_ES
dc.relation.references Mechel, F. P. Formulas of acoustics, 2nd ed. (Springer Science & Business Media, 2008). es_ES
dc.relation.references ISO Standard: ISO 17497–2:2012. Acoustics/Sound-scattering properties of surfaces/Part 2: Measurement of the directional diffusion coefficient in a free field. International Organization for Standardization, Geneva, Switzerland, https://www.iso.org/standard/55293.html (2012). es_ES


This item appears in the following Collection(s)

Show simple item record