- -

Metadiffusers: Deep-subwavelength sound diffusers

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Metadiffusers: Deep-subwavelength sound diffusers

Mostrar el registro completo del ítem

Jimenez, N.; Cox, TJ.; Romero García, V.; Groby, J. (2017). Metadiffusers: Deep-subwavelength sound diffusers. Scientific Reports. 7:1-12. https://doi.org/10.1038/s41598-017-05710-5

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/148883

Ficheros en el ítem

Metadatos del ítem

Título: Metadiffusers: Deep-subwavelength sound diffusers
Autor: Jimenez, Noe Cox, Trevor J. Romero García, Vicente Groby, J.P.
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada
Universitat Politècnica de València. Instituto de Instrumentación para Imagen Molecular - Institut d'Instrumentació per a Imatge Molecular
Fecha difusión:
Resumen:
[EN] We present deep-subwavelength diffusing surfaces based on acoustic metamaterials, namely metadiffusers. These sound diffusers are rigidly backed slotted panels, with each slit being loaded by an array of Helmholtz ...[+]
Palabras clave: Specular reflection , Sonic crystals , Phase gratings , Absorption , Resonators , Propagation , Inclusions , Scattering , Perfect
Derechos de uso: Reconocimiento (by)
Fuente:
Scientific Reports. (issn: 2045-2322 )
DOI: 10.1038/s41598-017-05710-5
Editorial:
Nature Publishing Group
Versión del editor: https://doi.org/10.1038/s41598-017-05710-5
Código del Proyecto:
info:eu-repo/grantAgreement/COST//CA15125/EU/Designs for Noise Reducing Materials and Structures (DENORMS)/
info:eu-repo/grantAgreement/ANR//ANR-13-BS09-0003/FR/Design of metamaterials for the absorption of audible sound/Metaudible/
Agradecimientos:
This article is based upon work from COST Action DENORMS - CA15125, supported by COST (European Cooperation in Science and Technology). The authors acknowledge financial support from the Metaudible Project No. ANR-13-BS09-0003, ...[+]
Tipo: Artículo

References

Cox, T. J. & D’Antonio, P. Acoustic absorbers and diffusers: theory, design and application, 3rd edn. (CRC Press, 2016).

Cox, T. J. & Lam, Y. Prediction and evaluation of the scattering from quadratic residue diffusers. The Journal of the Acoustical Society of America 95, 297–305 (1994).

Schröder, M. R. Diffuse sound reflection by maximum- length sequences. The Journal of the Acoustical Society of America 57, 149–150 (1975). [+]
Cox, T. J. & D’Antonio, P. Acoustic absorbers and diffusers: theory, design and application, 3rd edn. (CRC Press, 2016).

Cox, T. J. & Lam, Y. Prediction and evaluation of the scattering from quadratic residue diffusers. The Journal of the Acoustical Society of America 95, 297–305 (1994).

Schröder, M. R. Diffuse sound reflection by maximum- length sequences. The Journal of the Acoustical Society of America 57, 149–150 (1975).

Cox, T. J. & D’Antonio, P. Acoustic phase gratings for reduced specular reflection. Applied Acoustics 60, 167–186 (2000).

Cox, T. & D’Antonio, P. Schroeder diffusers: A review. Building Acoustics 10, 1–32 (2003).

Mechel, F. The wide-angle diffuser–a wide-angle absorber? Acta Acustica united with Acustica 81, 379–401 (1995).

Jrvinen, A., Savioja, L. & Melkas, K. Numerical simulations of the modified schroeder diffuser structure. J. Acoust. Soc. Am 103, 3065 (1998).

Hargreaves, J. & Cox, T. Improving the bass response of Schroeder diffusers. Proceedings of the Institute of Acoustics 25, 199–208 (2003).

Hunecke, J. Schallstreuung und Schallabsorption von Oberfl: ahen aus mikroperforierten Streifen. Ph.D. thesis, University of Stuttgart (1997).

Wu, T., Cox, T. J. & Lam, Y. A profiled structure with improved low frequency absorption. The Journal of the Acoustical Society of America 110, 3064–3070 (2001).

DAntonio, P. Inventor. RPG Diffusor Systems, Inc., assignee. Planar binary amplitude diffusor. United States patent US 5,817,992. Jun 5 (1998).

Xiao, L., Cox, T. J. & Avis, M. R. Active diffusers: some prototypes and 2D measurements. Journal of sound and vibration 285, 321–339 (2005).

Redondo, J., Picó, R., Sánchez-Morcillo, V. J. & Woszczyk, W. Sound diffusers based on sonic crystals. The Journal of the Acoustical Society of America 134, 4412–4417 (2013).

Redondo, J., Sánchez-Pérez, J., Blasco, X., Herrero, J. & Vorländer, M. Optimized sound diffusers based on sonic crystals using a multiobjective evolutionary algorithm. The Journal of the Acoustical Society of America 139, 2807–2814 (2016).

Santillán, A. & Bozhevolnyi, S. I. Acoustic transparency and slow sound using detuned acoustic resonators. Phys. Rev. B 84, 064304 (2011).

Ding, Y., Liu, Z., Qiu, C. & Shi, J. Metamaterial with simultaneously negative bulk modulus and mass density. Physical review letters 99, 093904 (2007).

Yang, Z., Mei, J., Yang, M., Chan, N. & Sheng, P. Membrane-type acoustic metamaterial with negative dynamic mass. Phys. Rev. Lett. 101, 204301 (2008).

Groby, J.-P., Duclos, A., Dazel, O., Boeckx, L. & Lauriks, W. Absorption of a rigid frame porous layer with periodic circular inclusions backed by a periodic grating. J. Acoust. Soc. Am. 129, 3035–3046 (2011).

Lagarrigue, C., Groby, J., Tournat, V., Dazel, O. & Umnova, O. Absorption of sound by porous layers with embedded periodic arrays of resonant inclusions. J. Acoust. Soc. Am. 134, 4670–4680 (2013).

Boutin, C. Acoustics of porous media with inner resonators. J. Acoust. Soc. Am. 134, 4717–4729 (2013).

Groby, J.-P. et al. Enhancing the absorption properties of acoustic porous plates by periodically embedding Helmholtz resonators. J. Acoust. Soc. Am. 137, 273–280 (2015).

Dupont, T., Leclaire, P., Sicot, O., Gong, X. L. & Panneton, R. Acoustic properties of air-saturated porous materials containing dead-end porosity. J Appl Phys 110, 094903 (2011).

Leclaire, P., Umnova, O., Dupont, T. & Panneton, R. Acoustical properties of air-saturated porous material with periodically distributed dead-end poresa. J. Acoust. Soc. Am. 137, 1772–1782 (2015).

Mei, J. et al. Dark acoustic metamaterials as super absorbers for low-frequency sound. Nat. Commun. 3, 756 (2012).

Ma, G., Yang, M., Xiao, S., Yang, Z. & Sheng, P. Acoustic metasurface with hybrid resonances. Nat. Mater. 13, 873–878 (2014).

Romero-García, V. et al. Perfect and broadband acoustic absorption by critically coupled sub-wavelength resonators. Sci. Rep. 6, 19519 (2016).

Groby, J.-P., Huang, W., Lardeau, A. & Aurégan, Y. The use of slow waves to design simple sound absorbing materials. J. Appl. Phys. 117, 124903 (2015).

Groby, J.-P., Pommier, R. & Aurégan, Y. Use of slow sound to design perfect and broadband passive sound absorbing materials. J. Acoust. Soc. Am. 139, 1660–1671 (2016).

Li, Y. & Assouar, B. M. Acoustic metasurface-based perfect absorber with deep subwavelength thickness. Appl. Phys. Lett. 108, 063502 (2016).

Romero-García, V., Theocharis, G., Richoux, O. & Pagneux, V. Use of complex frequency plane to design broadband and sub-wavelength absorbers. The Journal of the Acoustical Society of America 139, 3395–3403 (2016).

Jiménez, N., Huang, W., Romero-García, V., Pagneux, V. & Groby, J.-P. Ultra-thin metamaterial for perfect and quasi-omnidirectional sound absorption. Applied Physics Letters 109, 121902 (2016).

Jiménez, N., Romero-García, V., Pagneux, V. & Groby, J.-P. Quasiperfect absorption by subwavelength acoustic panels in transmission using accumulation of resonances due to slow sound. Phys. Rev. B 95, 014205 (2017).

Cox, T. J., Angus, J. A. & D’Antonio, P. Ternary and quadriphase sequence diffusers. The Journal of the Acoustical Society of America 119, 310–319 (2006).

Powell, M. J. A fast algorithm for nonlinearly constrained optimization calculations. In Numerical analysis, 144–157 (Springer, 1978).

Schroeder, M. Phase gratings with suppressed specular reflection. Acta Acustica united with Acustica 81, 364–369 (1995).

Burresi, M. et al. Bright-white beetle scales optimise multiple scattering of light. Scientific reports 4, 6075 (2014).

Clare, E. L. & Holderied, M. W. Acoustic shadows help gleaning bats find prey, but may be defeated by prey acoustic camouflage on rough surfaces. eLife 4, e07404 (2015).

Stinson, M. R. The propagation of plane sound waves in narrow and wide circular tubes, and generalization to uniform tubes of arbitrary cross-sectional shape. J. Acoust. Soc. Am. 89, 550–558 (1991).

Theocharis, G., Richoux, O., García, V. R., Merkel, A. & Tournat, V. Limits of slow sound propagation and transparency in lossy, locally resonant periodic structures. New J. Phys. 16, 093017 (2014).

Kergomard, J. & Garcia, A. Simple discontinuities in acoustic waveguides at low frequencies: critical analysis and formulae. J. Sound Vib. 114, 465–479 (1987).

Dubos, V. et al. Theory of sound propagation in a duct with a branched tube using modal decomposition. Acta Acustica united with Acustica 85, 153–169 (1999).

Mechel, F. P. Formulas of acoustics, 2nd ed. (Springer Science & Business Media, 2008).

ISO Standard: ISO 17497–2:2012. Acoustics/Sound-scattering properties of surfaces/Part 2: Measurement of the directional diffusion coefficient in a free field. International Organization for Standardization, Geneva, Switzerland, https://www.iso.org/standard/55293.html (2012).

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem