- -

Ectopic Expression of CDF3 Genes in Tomato Enhances Biomass Production and Yield under Salinity Stress Conditions

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by


Ectopic Expression of CDF3 Genes in Tomato Enhances Biomass Production and Yield under Salinity Stress Conditions

Show full item record

Renau Morata, B.; Molina Romero, RV.; Carrillo, L.; Cebolla Cornejo, J.; Sánchez Perales, M.; Pollmann, S.; Dominguez, J.... (2017). Ectopic Expression of CDF3 Genes in Tomato Enhances Biomass Production and Yield under Salinity Stress Conditions. Frontiers in Plant Science. 8:1-18. https://doi.org/10.3389/fpls.2017.00660

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/148888

Files in this item

Item Metadata

Title: Ectopic Expression of CDF3 Genes in Tomato Enhances Biomass Production and Yield under Salinity Stress Conditions
Author: Renau Morata, Begoña Molina Romero, Rosa Victoria Carrillo, Laura Cebolla Cornejo, Jaime Sánchez Perales, Manuel Pollmann, Stephan Dominguez, Jose Corrales, Alba Rocío Flexas, J. Vicente, Jesus Medina, Joaquín Nebauer, Sergio G.
UPV Unit: Universitat Politècnica de València. Departamento de Producción Vegetal - Departament de Producció Vegetal
Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Issued date:
[EN] Cycling Dof Factor (CDF) transcription factors (TFs) are involved in multiple processes related to plant growth and development. A member of this family, CDF3, has recently been linked in Arabidopsis to the regulation ...[+]
Subjects: CDF , Tomato , Photosynthesis , Abiotic stress , Crop yield , C/N metabolism , Transcriptome
Copyrigths: Reconocimiento (by)
Frontiers in Plant Science. (eissn: 1664-462X )
DOI: 10.3389/fpls.2017.00660
Frontiers Media SA
Publisher version: https://doi.org/10.3389/fpls.2017.00660
Project ID:
This work has been supported by grants from the Institute Nacional de Investigacion y Tecnologia Agraria y Alimentaria (Projects 2009-0004-C01 and 2012-0008-C01) and the Ministerio de Economia, Industria y Competitividad ...[+]
Type: Artículo


Abreu, I. A., Farinha, A. P., Negrão, S., Gonçalves, N., Fonseca, C., Rodrigues, M., … Oliveira, M. M. (2013). Coping with abiotic stress: Proteome changes for crop improvement. Journal of Proteomics, 93, 145-168. doi:10.1016/j.jprot.2013.07.014

Agarwal, P., Dabi, M., Sapara, K. K., Joshi, P. S., & Agarwal, P. K. (2016). Ectopic Expression of JcWRKY Transcription Factor Confers Salinity Tolerance via Salicylic Acid Signaling. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.01541

Akihiro, T., Koike, S., Tani, R., Tominaga, T., Watanabe, S., Iijima, Y., … Ezura, H. (2008). Biochemical Mechanism on GABA Accumulation During Fruit Development in Tomato. Plant and Cell Physiology, 49(9), 1378-1389. doi:10.1093/pcp/pcn113 [+]
Abreu, I. A., Farinha, A. P., Negrão, S., Gonçalves, N., Fonseca, C., Rodrigues, M., … Oliveira, M. M. (2013). Coping with abiotic stress: Proteome changes for crop improvement. Journal of Proteomics, 93, 145-168. doi:10.1016/j.jprot.2013.07.014

Agarwal, P., Dabi, M., Sapara, K. K., Joshi, P. S., & Agarwal, P. K. (2016). Ectopic Expression of JcWRKY Transcription Factor Confers Salinity Tolerance via Salicylic Acid Signaling. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.01541

Akihiro, T., Koike, S., Tani, R., Tominaga, T., Watanabe, S., Iijima, Y., … Ezura, H. (2008). Biochemical Mechanism on GABA Accumulation During Fruit Development in Tomato. Plant and Cell Physiology, 49(9), 1378-1389. doi:10.1093/pcp/pcn113

Albacete, A. A., Martínez-Andújar, C., & Pérez-Alfocea, F. (2014). Hormonal and metabolic regulation of source–sink relations under salinity and drought: From plant survival to crop yield stability. Biotechnology Advances, 32(1), 12-30. doi:10.1016/j.biotechadv.2013.10.005

Araújo, W. L., Tohge, T., Nunes-Nesi, A., Daloso, D. M., Nimick, M., Krahnert, I., … Fernie, A. R. (2012). Phosphonate Analogs of 2-Oxoglutarate Perturb Metabolism and Gene Expression in Illuminated Arabidopsis Leaves. Frontiers in Plant Science, 3. doi:10.3389/fpls.2012.00114

Ariizumi, T., Shinozaki, Y., & Ezura, H. (2013). Genes that influence yield in tomato. Breeding Science, 63(1), 3-13. doi:10.1270/jsbbs.63.3

Baldwin, E. A., Scott, J. W., Einstein, M. A., Malundo, T. M. M., Carr, B. T., Shewfelt, R. L., & Tandon, K. S. (1998). Relationship between Sensory and Instrumental Analysis for Tomato Flavor. Journal of the American Society for Horticultural Science, 123(5), 906-915. doi:10.21273/jashs.123.5.906

BAO, H., CHEN, X., LV, S., JIANG, P., FENG, J., FAN, P., … LI, Y. (2014). Virus-induced gene silencing reveals control of reactive oxygen species accumulation and salt tolerance in tomato byγ-aminobutyric acid metabolic pathway. Plant, Cell & Environment, 38(3), 600-613. doi:10.1111/pce.12419

Barajas-López, J. de D., Tezycka, J., Travaglia, C. N., Serrato, A. J., Chueca, A., Thormählen, I., … Sahrawy, M. (2012). Expression of the chloroplast thioredoxins f and m is linked to short-term changes in the sugar and thiol status in leaves of Pisum sativum. Journal of Experimental Botany, 63(13), 4887-4900. doi:10.1093/jxb/ers163

Bucheli, P., Voirol, E., de la Torre, R., López, J., Rytz, A., Tanksley, S. D., & Pétiard, V. (1999). Definition of Nonvolatile Markers for Flavor of Tomato (Lycopersicon esculentumMill.) as Tools in Selection and Breeding. Journal of Agricultural and Food Chemistry, 47(2), 659-664. doi:10.1021/jf980875l

Cebolla-Cornejo, J., Valcárcel, M., Herrero-Martínez, J. M., Roselló, S., & Nuez, F. (2012). High efficiency joint CZE determination of sugars and acids in vegetables and fruits. ELECTROPHORESIS, 33(15), 2416-2423. doi:10.1002/elps.201100640

Centeno, D. C., Osorio, S., Nunes-Nesi, A., Bertolo, A. L. F., Carneiro, R. T., Araújo, W. L., … Fernie, A. R. (2011). Malate Plays a Crucial Role in Starch Metabolism, Ripening, and Soluble Solid Content of Tomato Fruit and Affects Postharvest Softening. The Plant Cell, 23(1), 162-184. doi:10.1105/tpc.109.072231

Chen, K.-M., Holmström, M., Raksajit, W., Suorsa, M., Piippo, M., & Aro, E.-M. (2010). Small chloroplast-targeted DnaJ proteins are involved in optimization of photosynthetic reactions in Arabidopsis thaliana. BMC Plant Biology, 10(1), 43. doi:10.1186/1471-2229-10-43

Chen, Z.-H., Walker, R. P., T�csi, L. I., Lea, P. J., & Leegood, R. C. (2004). Phosphoenolpyruvate carboxykinase in cucumber plants is increased both by ammonium and by acidification, and is present in the phloem. Planta, 219(1), 48-58. doi:10.1007/s00425-004-1220-y

Chow, C.-N., Zheng, H.-Q., Wu, N.-Y., Chien, C.-H., Huang, H.-D., Lee, T.-Y., … Chang, W.-C. (2015). PlantPAN 2.0: an update of plant promoter analysis navigator for reconstructing transcriptional regulatory networks in plants. Nucleic Acids Research, 44(D1), D1154-D1160. doi:10.1093/nar/gkv1035

Corrales, A., Carrillo, L., Lasierra, P., Nebauer, S. G., Dominguez‐Figueroa, J., Renau‐Morata, B., … Medina, J. (2017). Multifaceted role of cycling DOF factor 3 (CDF3) in the regulation of flowering time and abiotic stress responses inArabidopsis. Plant, Cell & Environment, 40(5), 748-764. doi:10.1111/pce.12894

Corrales, A.-R., Nebauer, S. G., Carrillo, L., Fernández-Nohales, P., Marqués, J., Renau-Morata, B., … Medina, J. (2014). Characterization of tomato Cycling Dof Factors reveals conserved and new functions in the control of flowering time and abiotic stress responses. Journal of Experimental Botany, 65(4), 995-1012. doi:10.1093/jxb/ert451

Cortés-Olmos, C., Leiva-Brondo, M., Roselló, J., Raigón, M. D., & Cebolla-Cornejo, J. (2014). The role of traditional varieties of tomato as sources of functional compounds. Journal of the Science of Food and Agriculture, 94(14), 2888-2904. doi:10.1002/jsfa.6629

Datta, K., Baisakh, N., Ganguly, M., Krishnan, S., Yamaguchi Shinozaki, K., & Datta, S. K. (2012). Overexpression of Arabidopsis and Rice stress genes’ inducible transcription factor confers drought and salinity tolerance to rice. Plant Biotechnology Journal, 10(5), 579-586. doi:10.1111/j.1467-7652.2012.00688.x

Dicko, M. H., Gruppen, H., Barro, C., Traore, A. S., van Berkel, W. J. H., & Voragen, A. G. J. (2005). Impact of Phenolic Compounds and Related Enzymes in Sorghum Varieties for Resistance and Susceptibility to Biotic and Abiotic Stresses. Journal of Chemical Ecology, 31(11), 2671-2688. doi:10.1007/s10886-005-7619-5

Du, Z., Zhou, X., Ling, Y., Zhang, Z., & Su, Z. (2010). agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Research, 38(suppl_2), W64-W70. doi:10.1093/nar/gkq310

Ellul, P., Garcia-Sogo, B., Pineda, B., Ríos, G., Roig, L., & Moreno, V. (2003). The ploidy level of transgenic plants in Agrobacterium-mediated transformation of tomato cotyledons (Lycopersicon esculentum L.Mill.) is genotype and procedure dependent. Theoretical and Applied Genetics, 106(2), 231-238. doi:10.1007/s00122-002-0928-y

FLEXAS, J. (2002). Drought-inhibition of Photosynthesis in C3 Plants: Stomatal and Non-stomatal Limitations Revisited. Annals of Botany, 89(2), 183-189. doi:10.1093/aob/mcf027

FLEXAS, J., DIAZ-ESPEJO, A., GALMÉS, J., KALDENHOFF, R., MEDRANO, H., & RIBAS-CARBO, M. (2007). Rapid variations of mesophyll conductance in response to changes in CO2concentration around leaves. Plant, Cell & Environment, 30(10), 1284-1298. doi:10.1111/j.1365-3040.2007.01700.x

Fornara, F., Montaigu, A., Sánchez‐Villarreal, A., Takahashi, Y., Ver Loren van Themaat, E., Huettel, B., … Coupland, G. (2015). The GI – CDF module of Arabidopsis affects freezing tolerance and growth as well as flowering. The Plant Journal, 81(5), 695-706. doi:10.1111/tpj.12759

Foyer, C. H., Noctor, G., & Verrier, P. (s. f.). Photosynthetic Carbon–Nitrogen Interactions: Modelling Inter-Pathway Control and Signalling. Control of Primary Metabolism in Plants, 325-347. doi:10.1002/9780470988640.ch12

Godfray, H. C. J., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., Nisbett, N., … Whiteley, R. (2010). The future of the global food system. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1554), 2769-2777. doi:10.1098/rstb.2010.0180

Gupta, N., Gupta, A. K., & Kumar, A. (2011). Spatial distribution pattern analysis of Dof1 transcription factor in different tissues of three Eleusine coracana genotypes differing in their grain colour, yield and photosynthetic efficiency. Molecular Biology Reports, 39(3), 2089-2095. doi:10.1007/s11033-011-0956-2

Harley, P. C., Loreto, F., Di Marco, G., & Sharkey, T. D. (1992). Theoretical Considerations when Estimating the Mesophyll Conductance to CO2 Flux by Analysis of the Response of Photosynthesis to CO2. Plant Physiology, 98(4), 1429-1436. doi:10.1104/pp.98.4.1429

Hichri, I., Muhovski, Y., Clippe, A., Žižková, E., Dobrev, P. I., Motyka, V., & Lutts, S. (2015). SlDREB2, a tomato dehydration-responsive element-binding 2 transcription factor, mediates salt stress tolerance in tomato and Arabidopsis. Plant, Cell & Environment, 39(1), 62-79. doi:10.1111/pce.12591

Hoffman, N. E., Ko, K., Milkowski, D., & Pichersky, E. (1991). Isolation and characterization of tomato cDNA and genomic clones encoding the ubiquitin gene ubi3. Plant Molecular Biology, 17(6), 1189-1201. doi:10.1007/bf00028735

Hong, Y., Zhang, H., Huang, L., Li, D., & Song, F. (2016). Overexpression of a Stress-Responsive NAC Transcription Factor Gene ONAC022 Improves Drought and Salt Tolerance in Rice. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.00004

Huang, D., Wang, S., Zhang, B., Shang-Guan, K., Shi, Y., Zhang, D., … Zhou, Y. (2015). A Gibberellin-Mediated DELLA-NAC Signaling Cascade Regulates Cellulose Synthesis in Rice. The Plant Cell, 27(6), 1681-1696. doi:10.1105/tpc.15.00015

Kasahara, H., Hanada, A., Kuzuyama, T., Takagi, M., Kamiya, Y., & Yamaguchi, S. (2002). Contribution of the Mevalonate and Methylerythritol Phosphate Pathways to the Biosynthesis of Gibberellins inArabidopsis. Journal of Biological Chemistry, 277(47), 45188-45194. doi:10.1074/jbc.m208659200

Mechanisms and dynamics in the thiol/disulphide redox regulatory network: transmitters, sensors and targets261268 KönigJ. MuthuramalingamM. DietzK. J. 10.1016/j.pbi.2011.12.00222226570Curr. Opin. Plant Biol.152012

Kördel, B., & Kutschera, U. (2000). Effects of Gibberellin on Cellulose Biosynthesis and Membrane-associated Sucrose Synthase Activity in Pea Internodes. Journal of Plant Physiology, 156(4), 570-573. doi:10.1016/s0176-1617(00)80176-5

Krasensky, J., & Jonak, C. (2012). Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. Journal of Experimental Botany, 63(4), 1593-1608. doi:10.1093/jxb/err460

Kurai, T., Wakayama, M., Abiko, T., Yanagisawa, S., Aoki, N., & Ohsugi, R. (2011). Introduction of the ZmDof1 gene into rice enhances carbon and nitrogen assimilation under low-nitrogen conditions. Plant Biotechnology Journal, 9(8), 826-837. doi:10.1111/j.1467-7652.2011.00592.x

Lam, H.-M., Coschigano, K. T., Oliveira, I. C., Melo-Oliveira, R., & Coruzzi, G. M. (1996). THE MOLECULAR-GENETICS OF NITROGEN ASSIMILATION INTO AMINO ACIDS IN HIGHER PLANTS. Annual Review of Plant Physiology and Plant Molecular Biology, 47(1), 569-593. doi:10.1146/annurev.arplant.47.1.569

Lee, Y. (2002). Expression of alpha -Expansin and Expansin-Like Genes in Deepwater Rice. PLANT PHYSIOLOGY, 130(3), 1396-1405. doi:10.1104/pp.008888

Leivar, P., & Monte, E. (2014). PIFs: Systems Integrators in Plant Development. The Plant Cell, 26(1), 56-78. doi:10.1105/tpc.113.120857

Li, R., Yu, C., Li, Y., Lam, T.-W., Yiu, S.-M., Kristiansen, K., & Wang, J. (2009). SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics, 25(15), 1966-1967. doi:10.1093/bioinformatics/btp336

Liu, Z., Zhang, Y., Liu, R., Hao, H., Wang, Z., & Bi, Y. (2011). Phytochrome interacting factors (PIFs) are essential regulators for sucrose-induced hypocotyl elongation in Arabidopsis. Journal of Plant Physiology, 168(15), 1771-1779. doi:10.1016/j.jplph.2011.04.009

Livak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25(4), 402-408. doi:10.1006/meth.2001.1262

Long, S. P., Marshall-Colon, A., & Zhu, X.-G. (2015). Meeting the Global Food Demand of the Future by Engineering Crop Photosynthesis and Yield Potential. Cell, 161(1), 56-66. doi:10.1016/j.cell.2015.03.019

LONG, S. P., ZHU, X.-G., NAIDU, S. L., & ORT, D. R. (2006). Can improvement in photosynthesis increase crop yields? Plant, Cell and Environment, 29(3), 315-330. doi:10.1111/j.1365-3040.2005.01493.x

De Lucas, M., & Prat, S. (2014). PIFs get BRright: PHYTOCHROME INTERACTING FACTORs as integrators of light and hormonal signals. New Phytologist, 202(4), 1126-1141. doi:10.1111/nph.12725

Mariotti, L., Picciarelli, P., Lombardi, L., & Ceccarelli, N. (2011). Fruit-set and Early Fruit Growth in Tomato are Associated with Increases in Indoleacetic Acid, Cytokinin, and Bioactive Gibberellin Contents. Journal of Plant Growth Regulation, 30(4), 405-415. doi:10.1007/s00344-011-9204-1

Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L., & Wold, B. (2008). Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods, 5(7), 621-628. doi:10.1038/nmeth.1226

Nebauer, S. G., Renau-Morata, B., Guardiola, J. L., & Molina, R.-V. (2011). Photosynthesis down-regulation precedes carbohydrate accumulation under sink limitation in Citrus. Tree Physiology, 31(2), 169-177. doi:10.1093/treephys/tpq103

Osorio, S., Vallarino, J. G., Szecowka, M., Ufaz, S., Tzin, V., Angelovici, R., … Fernie, A. R. (2012). Alteration of the Interconversion of Pyruvate and Malate in the Plastid or Cytosol of Ripening Tomato Fruit Invokes Diverse Consequences on Sugar But Similar Effects on Cellular Organic Acid, Metabolism, and Transitory Starch Accumulation. Plant Physiology, 161(2), 628-643. doi:10.1104/pp.112.211094

Pandey, S. K., Nookaraju, A., Upadhyaya, C. P., Gururani, M. A., Venkatesh, J., Kim, D.-H., & Park, S. W. (2011). An Update on Biotechnological Approaches for Improving Abiotic Stress Tolerance in Tomato. Crop Science, 51(6), 2303-2324. doi:10.2135/cropsci2010.10.0579

Pareek, A., Sopory, S. K., & Bohnert, H. J. (Eds.). (2010). Abiotic Stress Adaptation in Plants. doi:10.1007/978-90-481-3112-9

Paul, M. J., & Foyer, C. H. (2001). Sink regulation of photosynthesis. Journal of Experimental Botany, 52(360), 1383-1400. doi:10.1093/jexbot/52.360.1383

Pulido, P., Perello, C., & Rodriguez-Concepcion, M. (2012). New Insights into Plant Isoprenoid Metabolism. Molecular Plant, 5(5), 964-967. doi:10.1093/mp/sss088

Renau-Morata, B., Sánchez-Perales, M., Medina, J., Molina, R., Corrales, R., Carrillo, L., … Nebauer, S. (2014). Salinity Assay in Tomato. BIO-PROTOCOL, 4(16). doi:10.21769/bioprotoc.1215

Roche, D. (2015). Stomatal Conductance Is Essential for Higher Yield Potential of C3Crops. Critical Reviews in Plant Sciences, 34(4), 429-453. doi:10.1080/07352689.2015.1023677

Roitsch, T., & González, M.-C. (2004). Function and regulation of plant invertases: sweet sensations. Trends in Plant Science, 9(12), 606-613. doi:10.1016/j.tplants.2004.10.009

Ruan, Y.-L. (2014). Sucrose Metabolism: Gateway to Diverse Carbon Use and Sugar Signaling. Annual Review of Plant Biology, 65(1), 33-67. doi:10.1146/annurev-arplant-050213-040251

Sah, S. K., Reddy, K. R., & Li, J. (2016). Abscisic Acid and Abiotic Stress Tolerance in Crop Plants. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.00571

Saibo, N. J. M., Lourenço, T., & Oliveira, M. M. (2008). Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses. Annals of Botany, 103(4), 609-623. doi:10.1093/aob/mcn227

Serrato, A. J., Fernández-Trijueque, J., Barajas-López, J.-D., Chueca, A., & Sahrawy, M. (2013). Plastid thioredoxins: a «one-for-all» redox-signaling system in plants. Frontiers in Plant Science, 4. doi:10.3389/fpls.2013.00463

Shelp, B. (1999). Metabolism and functions of gamma-aminobutyric acid. Trends in Plant Science, 4(11), 446-452. doi:10.1016/s1360-1385(99)01486-7

Shimizu, H., Torii, K., Araki, T., & Endo, M. (2016). Importance of epidermal clocks for regulation of hypocotyl elongation throughPIF4andIAA29. Plant Signaling & Behavior, 11(2), e1143999. doi:10.1080/15592324.2016.1143999

Sinclair, T. R., Purcell, L. C., & Sneller, C. H. (2004). Crop transformation and the challenge to increase yield potential. Trends in Plant Science, 9(2), 70-75. doi:10.1016/j.tplants.2003.12.008

STITT, M., & KRAPP, A. (1999). The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. Plant, Cell and Environment, 22(6), 583-621. doi:10.1046/j.1365-3040.1999.00386.x

Supek, F., Bošnjak, M., Škunca, N., & Šmuc, T. (2011). REVIGO Summarizes and Visualizes Long Lists of Gene Ontology Terms. PLoS ONE, 6(7), e21800. doi:10.1371/journal.pone.0021800

Tezara, W., Mitchell, V. J., Driscoll, S. D., & Lawlor, D. W. (1999). Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature, 401(6756), 914-917. doi:10.1038/44842

Varshney, R. K., Bansal, K. C., Aggarwal, P. K., Datta, S. K., & Craufurd, P. Q. (2011). Agricultural biotechnology for crop improvement in a variable climate: hope or hype? Trends in Plant Science, 16(7), 363-371. doi:10.1016/j.tplants.2011.03.004

Voss, I., Sunil, B., Scheibe, R., & Raghavendra, A. S. (2013). Emerging concept for the role of photorespiration as an important part of abiotic stress response. Plant Biology, 15(4), 713-722. doi:10.1111/j.1438-8677.2012.00710.x

Wang, B., Guo, G., Wang, C., Lin, Y., Wang, X., Zhao, M., … Pan, L. (2010). Survey of the transcriptome of Aspergillus oryzae via massively parallel mRNA sequencing. Nucleic Acids Research, 38(15), 5075-5087. doi:10.1093/nar/gkq256

Yamaguchi-Shinozaki, K., & Shinozaki, K. (2006). TRANSCRIPTIONAL REGULATORY NETWORKS IN CELLULAR RESPONSES AND TOLERANCE TO DEHYDRATION AND COLD STRESSES. Annual Review of Plant Biology, 57(1), 781-803. doi:10.1146/annurev.arplant.57.032905.105444

Yanagisawa, S. (2002). The Dof family of plant transcription factors. Trends in Plant Science, 7(12), 555-560. doi:10.1016/s1360-1385(02)02362-2

Yanagisawa, S. (2004). Dof Domain Proteins: Plant-Specific Transcription Factors Associated with Diverse Phenomena Unique to Plants. Plant and Cell Physiology, 45(4), 386-391. doi:10.1093/pcp/pch055

Yanagisawa, S., Akiyama, A., Kisaka, H., Uchimiya, H., & Miwa, T. (2004). Metabolic engineering with Dof1 transcription factor in plants: Improved nitrogen assimilation and growth under low-nitrogen conditions. Proceedings of the National Academy of Sciences, 101(20), 7833-7838. doi:10.1073/pnas.0402267101

Yanagisawa, S., & Schmidt, R. J. (1999). Diversity and similarity among recognition sequences of Dof transcription factors. The Plant Journal, 17(2), 209-214. doi:10.1046/j.1365-313x.1999.00363.x

Yin, Y.-G., Tominaga, T., Iijima, Y., Aoki, K., Shibata, D., Ashihara, H., … Matsukura, C. (2010). Metabolic Alterations in Organic Acids and γ-Aminobutyric Acid in Developing Tomato (Solanum lycopersicum L.) Fruits. Plant and Cell Physiology, 51(8), 1300-1314. doi:10.1093/pcp/pcq090

Zushi, K., & Matsuzoe, N. (2006). FREE AMINO ACID CONTENTS OF TOMATO FRUIT GROWN UNDER WATER AND SALINITY STRESSES. Acta Horticulturae, (724), 91-96. doi:10.17660/actahortic.2006.724.10




This item appears in the following Collection(s)

Show full item record