Mostrar el registro sencillo del ítem
dc.contributor.author | Renau Morata, Begoña | es_ES |
dc.contributor.author | Molina Romero, Rosa Victoria | es_ES |
dc.contributor.author | Carrillo, Laura | es_ES |
dc.contributor.author | Cebolla Cornejo, Jaime | es_ES |
dc.contributor.author | Sánchez Perales, Manuel | es_ES |
dc.contributor.author | Pollmann, Stephan | es_ES |
dc.contributor.author | Dominguez, Jose | es_ES |
dc.contributor.author | Corrales, Alba Rocío | es_ES |
dc.contributor.author | Flexas, J. | es_ES |
dc.contributor.author | Vicente, Jesus | es_ES |
dc.contributor.author | Medina, Joaquín | es_ES |
dc.contributor.author | Nebauer, Sergio G. | es_ES |
dc.date.accessioned | 2020-07-30T03:34:56Z | |
dc.date.available | 2020-07-30T03:34:56Z | |
dc.date.issued | 2017-05-03 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/148888 | |
dc.description.abstract | [EN] Cycling Dof Factor (CDF) transcription factors (TFs) are involved in multiple processes related to plant growth and development. A member of this family, CDF3, has recently been linked in Arabidopsis to the regulation of primary metabolism and abiotic stress responses, but its role in crop production under stress is still unknown. In this study, we characterized tomato plants overexpressing the CDF3 genes from Arabidopsis and tomato and analyzed their effects on growth and yield under salinity, additionally gaining deeper insights into the molecular function of these TFs. Our results provide evidence for higher biomass production and yield in the 35S::AtCDF3 and 35S::SICDF3 plants, likely due to a higher photosynthetic capacity resulting in increased sucrose availability. Transcriptome analysis revealed that CDF3 genes regulate a set of genes involved in redox homeostasis, photosynthesis performance and primary metabolism that lead to enhanced biomass production. Consistently, metabolomic profiling revealed that CDF3 evokes changes in the primary metabolism triggering enhanced nitrogen assimilation, and disclosed that the amount of some protective metabolites including sucrose, GABA and asparagine were higher in vegetative tissues of CDF3 overexpressing plants. Altogether these changes improved performance of 35S::AtCDF3 and 35S::SICDF3 plants under salinity conditions. Moreover, the overexpression of CDF3 genes modified organic acid and sugar content in fruits, improving variables related to flavor perception and fruit quality. Overall, our results associate the CDF3 IF with a role in the control of growth and C/N metabolism, and highlight that overexpression of CDF3 genes can substantially improve plant yield. | es_ES |
dc.description.sponsorship | This work has been supported by grants from the Institute Nacional de Investigacion y Tecnologia Agraria y Alimentaria (Projects 2009-0004-C01 and 2012-0008-C01) and the Ministerio de Economia, Industria y Competitividad (Projects BFU2013-49665-EXP and BIO2014-53181-R). JD was supported by an INIA predoctoral fellowship. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Frontiers Media SA | es_ES |
dc.relation.ispartof | Frontiers in Plant Science | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | CDF | es_ES |
dc.subject | Tomato | es_ES |
dc.subject | Photosynthesis | es_ES |
dc.subject | Abiotic stress | es_ES |
dc.subject | Crop yield | es_ES |
dc.subject | C/N metabolism | es_ES |
dc.subject | Transcriptome | es_ES |
dc.subject.classification | FISIOLOGIA VEGETAL | es_ES |
dc.subject.classification | GENETICA | es_ES |
dc.title | Ectopic Expression of CDF3 Genes in Tomato Enhances Biomass Production and Yield under Salinity Stress Conditions | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3389/fpls.2017.00660 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BFU2013-49665-EXP/ES/AUMENTO EN LA CAPTURA DE ENERGÍA Y CARBONO EN SISTEMAS VEGETALES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BIO2014-53181-R/ES/ESTRES DEL RETICULO ENDOPLASMICO EN PLANTAS: RESPUESTAS Y EFECTOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//RTA2009-00042-C02-02/ES/Caracterización fenotípica, fisiológica y metabólica, de plantas de tomate transformadas con genes reguladores implicados en la tolerancia a estreses abióticos. Estudio de la implicación de los CDFs de tomate en la respuesta al estrés./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//RTA2012-00008-C02-02/ES/Estudio del efecto de factores de transcripción tipo DOF (CDFs) sobre el crecimiento y la producción de solanáceas. Caracterización fisiológica y metabolómica./ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Producción Vegetal - Departament de Producció Vegetal | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.description.bibliographicCitation | Renau Morata, B.; Molina Romero, RV.; Carrillo, L.; Cebolla Cornejo, J.; Sánchez Perales, M.; Pollmann, S.; Dominguez, J.... (2017). Ectopic Expression of CDF3 Genes in Tomato Enhances Biomass Production and Yield under Salinity Stress Conditions. Frontiers in Plant Science. 8:1-18. https://doi.org/10.3389/fpls.2017.00660 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3389/fpls.2017.00660 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 18 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.identifier.eissn | 1664-462X | es_ES |
dc.identifier.pmid | 28515731 | es_ES |
dc.identifier.pmcid | PMC5414387 | es_ES |
dc.relation.pasarela | S\336860 | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Abreu, I. A., Farinha, A. P., Negrão, S., Gonçalves, N., Fonseca, C., Rodrigues, M., … Oliveira, M. M. (2013). Coping with abiotic stress: Proteome changes for crop improvement. Journal of Proteomics, 93, 145-168. doi:10.1016/j.jprot.2013.07.014 | es_ES |
dc.description.references | Agarwal, P., Dabi, M., Sapara, K. K., Joshi, P. S., & Agarwal, P. K. (2016). Ectopic Expression of JcWRKY Transcription Factor Confers Salinity Tolerance via Salicylic Acid Signaling. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.01541 | es_ES |
dc.description.references | Akihiro, T., Koike, S., Tani, R., Tominaga, T., Watanabe, S., Iijima, Y., … Ezura, H. (2008). Biochemical Mechanism on GABA Accumulation During Fruit Development in Tomato. Plant and Cell Physiology, 49(9), 1378-1389. doi:10.1093/pcp/pcn113 | es_ES |
dc.description.references | Albacete, A. A., Martínez-Andújar, C., & Pérez-Alfocea, F. (2014). Hormonal and metabolic regulation of source–sink relations under salinity and drought: From plant survival to crop yield stability. Biotechnology Advances, 32(1), 12-30. doi:10.1016/j.biotechadv.2013.10.005 | es_ES |
dc.description.references | Araújo, W. L., Tohge, T., Nunes-Nesi, A., Daloso, D. M., Nimick, M., Krahnert, I., … Fernie, A. R. (2012). Phosphonate Analogs of 2-Oxoglutarate Perturb Metabolism and Gene Expression in Illuminated Arabidopsis Leaves. Frontiers in Plant Science, 3. doi:10.3389/fpls.2012.00114 | es_ES |
dc.description.references | Ariizumi, T., Shinozaki, Y., & Ezura, H. (2013). Genes that influence yield in tomato. Breeding Science, 63(1), 3-13. doi:10.1270/jsbbs.63.3 | es_ES |
dc.description.references | Baldwin, E. A., Scott, J. W., Einstein, M. A., Malundo, T. M. M., Carr, B. T., Shewfelt, R. L., & Tandon, K. S. (1998). Relationship between Sensory and Instrumental Analysis for Tomato Flavor. Journal of the American Society for Horticultural Science, 123(5), 906-915. doi:10.21273/jashs.123.5.906 | es_ES |
dc.description.references | BAO, H., CHEN, X., LV, S., JIANG, P., FENG, J., FAN, P., … LI, Y. (2014). Virus-induced gene silencing reveals control of reactive oxygen species accumulation and salt tolerance in tomato byγ-aminobutyric acid metabolic pathway. Plant, Cell & Environment, 38(3), 600-613. doi:10.1111/pce.12419 | es_ES |
dc.description.references | Barajas-López, J. de D., Tezycka, J., Travaglia, C. N., Serrato, A. J., Chueca, A., Thormählen, I., … Sahrawy, M. (2012). Expression of the chloroplast thioredoxins f and m is linked to short-term changes in the sugar and thiol status in leaves of Pisum sativum. Journal of Experimental Botany, 63(13), 4887-4900. doi:10.1093/jxb/ers163 | es_ES |
dc.description.references | Bucheli, P., Voirol, E., de la Torre, R., López, J., Rytz, A., Tanksley, S. D., & Pétiard, V. (1999). Definition of Nonvolatile Markers for Flavor of Tomato (Lycopersicon esculentumMill.) as Tools in Selection and Breeding. Journal of Agricultural and Food Chemistry, 47(2), 659-664. doi:10.1021/jf980875l | es_ES |
dc.description.references | Cebolla-Cornejo, J., Valcárcel, M., Herrero-Martínez, J. M., Roselló, S., & Nuez, F. (2012). High efficiency joint CZE determination of sugars and acids in vegetables and fruits. ELECTROPHORESIS, 33(15), 2416-2423. doi:10.1002/elps.201100640 | es_ES |
dc.description.references | Centeno, D. C., Osorio, S., Nunes-Nesi, A., Bertolo, A. L. F., Carneiro, R. T., Araújo, W. L., … Fernie, A. R. (2011). Malate Plays a Crucial Role in Starch Metabolism, Ripening, and Soluble Solid Content of Tomato Fruit and Affects Postharvest Softening. The Plant Cell, 23(1), 162-184. doi:10.1105/tpc.109.072231 | es_ES |
dc.description.references | Chen, K.-M., Holmström, M., Raksajit, W., Suorsa, M., Piippo, M., & Aro, E.-M. (2010). Small chloroplast-targeted DnaJ proteins are involved in optimization of photosynthetic reactions in Arabidopsis thaliana. BMC Plant Biology, 10(1), 43. doi:10.1186/1471-2229-10-43 | es_ES |
dc.description.references | Chen, Z.-H., Walker, R. P., T�csi, L. I., Lea, P. J., & Leegood, R. C. (2004). Phosphoenolpyruvate carboxykinase in cucumber plants is increased both by ammonium and by acidification, and is present in the phloem. Planta, 219(1), 48-58. doi:10.1007/s00425-004-1220-y | es_ES |
dc.description.references | Chow, C.-N., Zheng, H.-Q., Wu, N.-Y., Chien, C.-H., Huang, H.-D., Lee, T.-Y., … Chang, W.-C. (2015). PlantPAN 2.0: an update of plant promoter analysis navigator for reconstructing transcriptional regulatory networks in plants. Nucleic Acids Research, 44(D1), D1154-D1160. doi:10.1093/nar/gkv1035 | es_ES |
dc.description.references | Corrales, A., Carrillo, L., Lasierra, P., Nebauer, S. G., Dominguez‐Figueroa, J., Renau‐Morata, B., … Medina, J. (2017). Multifaceted role of cycling DOF factor 3 (CDF3) in the regulation of flowering time and abiotic stress responses inArabidopsis. Plant, Cell & Environment, 40(5), 748-764. doi:10.1111/pce.12894 | es_ES |
dc.description.references | Corrales, A.-R., Nebauer, S. G., Carrillo, L., Fernández-Nohales, P., Marqués, J., Renau-Morata, B., … Medina, J. (2014). Characterization of tomato Cycling Dof Factors reveals conserved and new functions in the control of flowering time and abiotic stress responses. Journal of Experimental Botany, 65(4), 995-1012. doi:10.1093/jxb/ert451 | es_ES |
dc.description.references | Cortés-Olmos, C., Leiva-Brondo, M., Roselló, J., Raigón, M. D., & Cebolla-Cornejo, J. (2014). The role of traditional varieties of tomato as sources of functional compounds. Journal of the Science of Food and Agriculture, 94(14), 2888-2904. doi:10.1002/jsfa.6629 | es_ES |
dc.description.references | Datta, K., Baisakh, N., Ganguly, M., Krishnan, S., Yamaguchi Shinozaki, K., & Datta, S. K. (2012). Overexpression of Arabidopsis and Rice stress genes’ inducible transcription factor confers drought and salinity tolerance to rice. Plant Biotechnology Journal, 10(5), 579-586. doi:10.1111/j.1467-7652.2012.00688.x | es_ES |
dc.description.references | Dicko, M. H., Gruppen, H., Barro, C., Traore, A. S., van Berkel, W. J. H., & Voragen, A. G. J. (2005). Impact of Phenolic Compounds and Related Enzymes in Sorghum Varieties for Resistance and Susceptibility to Biotic and Abiotic Stresses. Journal of Chemical Ecology, 31(11), 2671-2688. doi:10.1007/s10886-005-7619-5 | es_ES |
dc.description.references | Du, Z., Zhou, X., Ling, Y., Zhang, Z., & Su, Z. (2010). agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Research, 38(suppl_2), W64-W70. doi:10.1093/nar/gkq310 | es_ES |
dc.description.references | Ellul, P., Garcia-Sogo, B., Pineda, B., Ríos, G., Roig, L., & Moreno, V. (2003). The ploidy level of transgenic plants in Agrobacterium-mediated transformation of tomato cotyledons (Lycopersicon esculentum L.Mill.) is genotype and procedure dependent. Theoretical and Applied Genetics, 106(2), 231-238. doi:10.1007/s00122-002-0928-y | es_ES |
dc.description.references | FLEXAS, J. (2002). Drought-inhibition of Photosynthesis in C3 Plants: Stomatal and Non-stomatal Limitations Revisited. Annals of Botany, 89(2), 183-189. doi:10.1093/aob/mcf027 | es_ES |
dc.description.references | FLEXAS, J., DIAZ-ESPEJO, A., GALMÉS, J., KALDENHOFF, R., MEDRANO, H., & RIBAS-CARBO, M. (2007). Rapid variations of mesophyll conductance in response to changes in CO2concentration around leaves. Plant, Cell & Environment, 30(10), 1284-1298. doi:10.1111/j.1365-3040.2007.01700.x | es_ES |
dc.description.references | Fornara, F., Montaigu, A., Sánchez‐Villarreal, A., Takahashi, Y., Ver Loren van Themaat, E., Huettel, B., … Coupland, G. (2015). The GI – CDF module of Arabidopsis affects freezing tolerance and growth as well as flowering. The Plant Journal, 81(5), 695-706. doi:10.1111/tpj.12759 | es_ES |
dc.description.references | Foyer, C. H., Noctor, G., & Verrier, P. (s. f.). Photosynthetic Carbon–Nitrogen Interactions: Modelling Inter-Pathway Control and Signalling. Control of Primary Metabolism in Plants, 325-347. doi:10.1002/9780470988640.ch12 | es_ES |
dc.description.references | Godfray, H. C. J., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., Nisbett, N., … Whiteley, R. (2010). The future of the global food system. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1554), 2769-2777. doi:10.1098/rstb.2010.0180 | es_ES |
dc.description.references | Gupta, N., Gupta, A. K., & Kumar, A. (2011). Spatial distribution pattern analysis of Dof1 transcription factor in different tissues of three Eleusine coracana genotypes differing in their grain colour, yield and photosynthetic efficiency. Molecular Biology Reports, 39(3), 2089-2095. doi:10.1007/s11033-011-0956-2 | es_ES |
dc.description.references | Harley, P. C., Loreto, F., Di Marco, G., & Sharkey, T. D. (1992). Theoretical Considerations when Estimating the Mesophyll Conductance to CO2 Flux by Analysis of the Response of Photosynthesis to CO2. Plant Physiology, 98(4), 1429-1436. doi:10.1104/pp.98.4.1429 | es_ES |
dc.description.references | Hichri, I., Muhovski, Y., Clippe, A., Žižková, E., Dobrev, P. I., Motyka, V., & Lutts, S. (2015). SlDREB2, a tomato dehydration-responsive element-binding 2 transcription factor, mediates salt stress tolerance in tomato and Arabidopsis. Plant, Cell & Environment, 39(1), 62-79. doi:10.1111/pce.12591 | es_ES |
dc.description.references | Hoffman, N. E., Ko, K., Milkowski, D., & Pichersky, E. (1991). Isolation and characterization of tomato cDNA and genomic clones encoding the ubiquitin gene ubi3. Plant Molecular Biology, 17(6), 1189-1201. doi:10.1007/bf00028735 | es_ES |
dc.description.references | Hong, Y., Zhang, H., Huang, L., Li, D., & Song, F. (2016). Overexpression of a Stress-Responsive NAC Transcription Factor Gene ONAC022 Improves Drought and Salt Tolerance in Rice. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.00004 | es_ES |
dc.description.references | Huang, D., Wang, S., Zhang, B., Shang-Guan, K., Shi, Y., Zhang, D., … Zhou, Y. (2015). A Gibberellin-Mediated DELLA-NAC Signaling Cascade Regulates Cellulose Synthesis in Rice. The Plant Cell, 27(6), 1681-1696. doi:10.1105/tpc.15.00015 | es_ES |
dc.description.references | Kasahara, H., Hanada, A., Kuzuyama, T., Takagi, M., Kamiya, Y., & Yamaguchi, S. (2002). Contribution of the Mevalonate and Methylerythritol Phosphate Pathways to the Biosynthesis of Gibberellins inArabidopsis. Journal of Biological Chemistry, 277(47), 45188-45194. doi:10.1074/jbc.m208659200 | es_ES |
dc.description.references | Mechanisms and dynamics in the thiol/disulphide redox regulatory network: transmitters, sensors and targets261268 KönigJ. MuthuramalingamM. DietzK. J. 10.1016/j.pbi.2011.12.00222226570Curr. Opin. Plant Biol.152012 | es_ES |
dc.description.references | Kördel, B., & Kutschera, U. (2000). Effects of Gibberellin on Cellulose Biosynthesis and Membrane-associated Sucrose Synthase Activity in Pea Internodes. Journal of Plant Physiology, 156(4), 570-573. doi:10.1016/s0176-1617(00)80176-5 | es_ES |
dc.description.references | Krasensky, J., & Jonak, C. (2012). Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. Journal of Experimental Botany, 63(4), 1593-1608. doi:10.1093/jxb/err460 | es_ES |
dc.description.references | Kurai, T., Wakayama, M., Abiko, T., Yanagisawa, S., Aoki, N., & Ohsugi, R. (2011). Introduction of the ZmDof1 gene into rice enhances carbon and nitrogen assimilation under low-nitrogen conditions. Plant Biotechnology Journal, 9(8), 826-837. doi:10.1111/j.1467-7652.2011.00592.x | es_ES |
dc.description.references | Lam, H.-M., Coschigano, K. T., Oliveira, I. C., Melo-Oliveira, R., & Coruzzi, G. M. (1996). THE MOLECULAR-GENETICS OF NITROGEN ASSIMILATION INTO AMINO ACIDS IN HIGHER PLANTS. Annual Review of Plant Physiology and Plant Molecular Biology, 47(1), 569-593. doi:10.1146/annurev.arplant.47.1.569 | es_ES |
dc.description.references | Lee, Y. (2002). Expression of alpha -Expansin and Expansin-Like Genes in Deepwater Rice. PLANT PHYSIOLOGY, 130(3), 1396-1405. doi:10.1104/pp.008888 | es_ES |
dc.description.references | Leivar, P., & Monte, E. (2014). PIFs: Systems Integrators in Plant Development. The Plant Cell, 26(1), 56-78. doi:10.1105/tpc.113.120857 | es_ES |
dc.description.references | Li, R., Yu, C., Li, Y., Lam, T.-W., Yiu, S.-M., Kristiansen, K., & Wang, J. (2009). SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics, 25(15), 1966-1967. doi:10.1093/bioinformatics/btp336 | es_ES |
dc.description.references | Liu, Z., Zhang, Y., Liu, R., Hao, H., Wang, Z., & Bi, Y. (2011). Phytochrome interacting factors (PIFs) are essential regulators for sucrose-induced hypocotyl elongation in Arabidopsis. Journal of Plant Physiology, 168(15), 1771-1779. doi:10.1016/j.jplph.2011.04.009 | es_ES |
dc.description.references | Livak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25(4), 402-408. doi:10.1006/meth.2001.1262 | es_ES |
dc.description.references | Long, S. P., Marshall-Colon, A., & Zhu, X.-G. (2015). Meeting the Global Food Demand of the Future by Engineering Crop Photosynthesis and Yield Potential. Cell, 161(1), 56-66. doi:10.1016/j.cell.2015.03.019 | es_ES |
dc.description.references | LONG, S. P., ZHU, X.-G., NAIDU, S. L., & ORT, D. R. (2006). Can improvement in photosynthesis increase crop yields? Plant, Cell and Environment, 29(3), 315-330. doi:10.1111/j.1365-3040.2005.01493.x | es_ES |
dc.description.references | De Lucas, M., & Prat, S. (2014). PIFs get BRright: PHYTOCHROME INTERACTING FACTORs as integrators of light and hormonal signals. New Phytologist, 202(4), 1126-1141. doi:10.1111/nph.12725 | es_ES |
dc.description.references | Mariotti, L., Picciarelli, P., Lombardi, L., & Ceccarelli, N. (2011). Fruit-set and Early Fruit Growth in Tomato are Associated with Increases in Indoleacetic Acid, Cytokinin, and Bioactive Gibberellin Contents. Journal of Plant Growth Regulation, 30(4), 405-415. doi:10.1007/s00344-011-9204-1 | es_ES |
dc.description.references | Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L., & Wold, B. (2008). Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods, 5(7), 621-628. doi:10.1038/nmeth.1226 | es_ES |
dc.description.references | Nebauer, S. G., Renau-Morata, B., Guardiola, J. L., & Molina, R.-V. (2011). Photosynthesis down-regulation precedes carbohydrate accumulation under sink limitation in Citrus. Tree Physiology, 31(2), 169-177. doi:10.1093/treephys/tpq103 | es_ES |
dc.description.references | Osorio, S., Vallarino, J. G., Szecowka, M., Ufaz, S., Tzin, V., Angelovici, R., … Fernie, A. R. (2012). Alteration of the Interconversion of Pyruvate and Malate in the Plastid or Cytosol of Ripening Tomato Fruit Invokes Diverse Consequences on Sugar But Similar Effects on Cellular Organic Acid, Metabolism, and Transitory Starch Accumulation. Plant Physiology, 161(2), 628-643. doi:10.1104/pp.112.211094 | es_ES |
dc.description.references | Pandey, S. K., Nookaraju, A., Upadhyaya, C. P., Gururani, M. A., Venkatesh, J., Kim, D.-H., & Park, S. W. (2011). An Update on Biotechnological Approaches for Improving Abiotic Stress Tolerance in Tomato. Crop Science, 51(6), 2303-2324. doi:10.2135/cropsci2010.10.0579 | es_ES |
dc.description.references | Pareek, A., Sopory, S. K., & Bohnert, H. J. (Eds.). (2010). Abiotic Stress Adaptation in Plants. doi:10.1007/978-90-481-3112-9 | es_ES |
dc.description.references | Paul, M. J., & Foyer, C. H. (2001). Sink regulation of photosynthesis. Journal of Experimental Botany, 52(360), 1383-1400. doi:10.1093/jexbot/52.360.1383 | es_ES |
dc.description.references | Pulido, P., Perello, C., & Rodriguez-Concepcion, M. (2012). New Insights into Plant Isoprenoid Metabolism. Molecular Plant, 5(5), 964-967. doi:10.1093/mp/sss088 | es_ES |
dc.description.references | Renau-Morata, B., Sánchez-Perales, M., Medina, J., Molina, R., Corrales, R., Carrillo, L., … Nebauer, S. (2014). Salinity Assay in Tomato. BIO-PROTOCOL, 4(16). doi:10.21769/bioprotoc.1215 | es_ES |
dc.description.references | Roche, D. (2015). Stomatal Conductance Is Essential for Higher Yield Potential of C3Crops. Critical Reviews in Plant Sciences, 34(4), 429-453. doi:10.1080/07352689.2015.1023677 | es_ES |
dc.description.references | Roitsch, T., & González, M.-C. (2004). Function and regulation of plant invertases: sweet sensations. Trends in Plant Science, 9(12), 606-613. doi:10.1016/j.tplants.2004.10.009 | es_ES |
dc.description.references | Ruan, Y.-L. (2014). Sucrose Metabolism: Gateway to Diverse Carbon Use and Sugar Signaling. Annual Review of Plant Biology, 65(1), 33-67. doi:10.1146/annurev-arplant-050213-040251 | es_ES |
dc.description.references | Sah, S. K., Reddy, K. R., & Li, J. (2016). Abscisic Acid and Abiotic Stress Tolerance in Crop Plants. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.00571 | es_ES |
dc.description.references | Saibo, N. J. M., Lourenço, T., & Oliveira, M. M. (2008). Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses. Annals of Botany, 103(4), 609-623. doi:10.1093/aob/mcn227 | es_ES |
dc.description.references | Serrato, A. J., Fernández-Trijueque, J., Barajas-López, J.-D., Chueca, A., & Sahrawy, M. (2013). Plastid thioredoxins: a «one-for-all» redox-signaling system in plants. Frontiers in Plant Science, 4. doi:10.3389/fpls.2013.00463 | es_ES |
dc.description.references | Shelp, B. (1999). Metabolism and functions of gamma-aminobutyric acid. Trends in Plant Science, 4(11), 446-452. doi:10.1016/s1360-1385(99)01486-7 | es_ES |
dc.description.references | Shimizu, H., Torii, K., Araki, T., & Endo, M. (2016). Importance of epidermal clocks for regulation of hypocotyl elongation throughPIF4andIAA29. Plant Signaling & Behavior, 11(2), e1143999. doi:10.1080/15592324.2016.1143999 | es_ES |
dc.description.references | Sinclair, T. R., Purcell, L. C., & Sneller, C. H. (2004). Crop transformation and the challenge to increase yield potential. Trends in Plant Science, 9(2), 70-75. doi:10.1016/j.tplants.2003.12.008 | es_ES |
dc.description.references | STITT, M., & KRAPP, A. (1999). The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. Plant, Cell and Environment, 22(6), 583-621. doi:10.1046/j.1365-3040.1999.00386.x | es_ES |
dc.description.references | Supek, F., Bošnjak, M., Škunca, N., & Šmuc, T. (2011). REVIGO Summarizes and Visualizes Long Lists of Gene Ontology Terms. PLoS ONE, 6(7), e21800. doi:10.1371/journal.pone.0021800 | es_ES |
dc.description.references | Tezara, W., Mitchell, V. J., Driscoll, S. D., & Lawlor, D. W. (1999). Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature, 401(6756), 914-917. doi:10.1038/44842 | es_ES |
dc.description.references | Varshney, R. K., Bansal, K. C., Aggarwal, P. K., Datta, S. K., & Craufurd, P. Q. (2011). Agricultural biotechnology for crop improvement in a variable climate: hope or hype? Trends in Plant Science, 16(7), 363-371. doi:10.1016/j.tplants.2011.03.004 | es_ES |
dc.description.references | Voss, I., Sunil, B., Scheibe, R., & Raghavendra, A. S. (2013). Emerging concept for the role of photorespiration as an important part of abiotic stress response. Plant Biology, 15(4), 713-722. doi:10.1111/j.1438-8677.2012.00710.x | es_ES |
dc.description.references | Wang, B., Guo, G., Wang, C., Lin, Y., Wang, X., Zhao, M., … Pan, L. (2010). Survey of the transcriptome of Aspergillus oryzae via massively parallel mRNA sequencing. Nucleic Acids Research, 38(15), 5075-5087. doi:10.1093/nar/gkq256 | es_ES |
dc.description.references | Yamaguchi-Shinozaki, K., & Shinozaki, K. (2006). TRANSCRIPTIONAL REGULATORY NETWORKS IN CELLULAR RESPONSES AND TOLERANCE TO DEHYDRATION AND COLD STRESSES. Annual Review of Plant Biology, 57(1), 781-803. doi:10.1146/annurev.arplant.57.032905.105444 | es_ES |
dc.description.references | Yanagisawa, S. (2002). The Dof family of plant transcription factors. Trends in Plant Science, 7(12), 555-560. doi:10.1016/s1360-1385(02)02362-2 | es_ES |
dc.description.references | Yanagisawa, S. (2004). Dof Domain Proteins: Plant-Specific Transcription Factors Associated with Diverse Phenomena Unique to Plants. Plant and Cell Physiology, 45(4), 386-391. doi:10.1093/pcp/pch055 | es_ES |
dc.description.references | Yanagisawa, S., Akiyama, A., Kisaka, H., Uchimiya, H., & Miwa, T. (2004). Metabolic engineering with Dof1 transcription factor in plants: Improved nitrogen assimilation and growth under low-nitrogen conditions. Proceedings of the National Academy of Sciences, 101(20), 7833-7838. doi:10.1073/pnas.0402267101 | es_ES |
dc.description.references | Yanagisawa, S., & Schmidt, R. J. (1999). Diversity and similarity among recognition sequences of Dof transcription factors. The Plant Journal, 17(2), 209-214. doi:10.1046/j.1365-313x.1999.00363.x | es_ES |
dc.description.references | Yin, Y.-G., Tominaga, T., Iijima, Y., Aoki, K., Shibata, D., Ashihara, H., … Matsukura, C. (2010). Metabolic Alterations in Organic Acids and γ-Aminobutyric Acid in Developing Tomato (Solanum lycopersicum L.) Fruits. Plant and Cell Physiology, 51(8), 1300-1314. doi:10.1093/pcp/pcq090 | es_ES |
dc.description.references | Zushi, K., & Matsuzoe, N. (2006). FREE AMINO ACID CONTENTS OF TOMATO FRUIT GROWN UNDER WATER AND SALINITY STRESSES. Acta Horticulturae, (724), 91-96. doi:10.17660/actahortic.2006.724.10 | es_ES |