- -

Ectopic Expression of CDF3 Genes in Tomato Enhances Biomass Production and Yield under Salinity Stress Conditions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Ectopic Expression of CDF3 Genes in Tomato Enhances Biomass Production and Yield under Salinity Stress Conditions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Renau Morata, Begoña es_ES
dc.contributor.author Molina Romero, Rosa Victoria es_ES
dc.contributor.author Carrillo, Laura es_ES
dc.contributor.author Cebolla Cornejo, Jaime es_ES
dc.contributor.author Sánchez Perales, Manuel es_ES
dc.contributor.author Pollmann, Stephan es_ES
dc.contributor.author Dominguez, Jose es_ES
dc.contributor.author Corrales, Alba Rocío es_ES
dc.contributor.author Flexas, J. es_ES
dc.contributor.author Vicente, Jesus es_ES
dc.contributor.author Medina, Joaquín es_ES
dc.contributor.author Nebauer, Sergio G. es_ES
dc.date.accessioned 2020-07-30T03:34:56Z
dc.date.available 2020-07-30T03:34:56Z
dc.date.issued 2017-05-03 es_ES
dc.identifier.uri http://hdl.handle.net/10251/148888
dc.description.abstract [EN] Cycling Dof Factor (CDF) transcription factors (TFs) are involved in multiple processes related to plant growth and development. A member of this family, CDF3, has recently been linked in Arabidopsis to the regulation of primary metabolism and abiotic stress responses, but its role in crop production under stress is still unknown. In this study, we characterized tomato plants overexpressing the CDF3 genes from Arabidopsis and tomato and analyzed their effects on growth and yield under salinity, additionally gaining deeper insights into the molecular function of these TFs. Our results provide evidence for higher biomass production and yield in the 35S::AtCDF3 and 35S::SICDF3 plants, likely due to a higher photosynthetic capacity resulting in increased sucrose availability. Transcriptome analysis revealed that CDF3 genes regulate a set of genes involved in redox homeostasis, photosynthesis performance and primary metabolism that lead to enhanced biomass production. Consistently, metabolomic profiling revealed that CDF3 evokes changes in the primary metabolism triggering enhanced nitrogen assimilation, and disclosed that the amount of some protective metabolites including sucrose, GABA and asparagine were higher in vegetative tissues of CDF3 overexpressing plants. Altogether these changes improved performance of 35S::AtCDF3 and 35S::SICDF3 plants under salinity conditions. Moreover, the overexpression of CDF3 genes modified organic acid and sugar content in fruits, improving variables related to flavor perception and fruit quality. Overall, our results associate the CDF3 IF with a role in the control of growth and C/N metabolism, and highlight that overexpression of CDF3 genes can substantially improve plant yield. es_ES
dc.description.sponsorship This work has been supported by grants from the Institute Nacional de Investigacion y Tecnologia Agraria y Alimentaria (Projects 2009-0004-C01 and 2012-0008-C01) and the Ministerio de Economia, Industria y Competitividad (Projects BFU2013-49665-EXP and BIO2014-53181-R). JD was supported by an INIA predoctoral fellowship. es_ES
dc.language Inglés es_ES
dc.publisher Frontiers Media SA es_ES
dc.relation.ispartof Frontiers in Plant Science es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject CDF es_ES
dc.subject Tomato es_ES
dc.subject Photosynthesis es_ES
dc.subject Abiotic stress es_ES
dc.subject Crop yield es_ES
dc.subject C/N metabolism es_ES
dc.subject Transcriptome es_ES
dc.subject.classification FISIOLOGIA VEGETAL es_ES
dc.subject.classification GENETICA es_ES
dc.title Ectopic Expression of CDF3 Genes in Tomato Enhances Biomass Production and Yield under Salinity Stress Conditions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3389/fpls.2017.00660 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BFU2013-49665-EXP/ES/AUMENTO EN LA CAPTURA DE ENERGÍA Y CARBONO EN SISTEMAS VEGETALES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIO2014-53181-R/ES/ESTRES DEL RETICULO ENDOPLASMICO EN PLANTAS: RESPUESTAS Y EFECTOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//RTA2009-00042-C02-02/ES/Caracterización fenotípica, fisiológica y metabólica, de plantas de tomate transformadas con genes reguladores implicados en la tolerancia a estreses abióticos. Estudio de la implicación de los CDFs de tomate en la respuesta al estrés./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RTA2012-00008-C02-02/ES/Estudio del efecto de factores de transcripción tipo DOF (CDFs) sobre el crecimiento y la producción de solanáceas. Caracterización fisiológica y metabolómica./ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Producción Vegetal - Departament de Producció Vegetal es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Renau Morata, B.; Molina Romero, RV.; Carrillo, L.; Cebolla Cornejo, J.; Sánchez Perales, M.; Pollmann, S.; Dominguez, J.... (2017). Ectopic Expression of CDF3 Genes in Tomato Enhances Biomass Production and Yield under Salinity Stress Conditions. Frontiers in Plant Science. 8:1-18. https://doi.org/10.3389/fpls.2017.00660 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3389/fpls.2017.00660 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 18 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.identifier.eissn 1664-462X es_ES
dc.identifier.pmid 28515731 es_ES
dc.identifier.pmcid PMC5414387 es_ES
dc.relation.pasarela S\336860 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Abreu, I. A., Farinha, A. P., Negrão, S., Gonçalves, N., Fonseca, C., Rodrigues, M., … Oliveira, M. M. (2013). Coping with abiotic stress: Proteome changes for crop improvement. Journal of Proteomics, 93, 145-168. doi:10.1016/j.jprot.2013.07.014 es_ES
dc.description.references Agarwal, P., Dabi, M., Sapara, K. K., Joshi, P. S., & Agarwal, P. K. (2016). Ectopic Expression of JcWRKY Transcription Factor Confers Salinity Tolerance via Salicylic Acid Signaling. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.01541 es_ES
dc.description.references Akihiro, T., Koike, S., Tani, R., Tominaga, T., Watanabe, S., Iijima, Y., … Ezura, H. (2008). Biochemical Mechanism on GABA Accumulation During Fruit Development in Tomato. Plant and Cell Physiology, 49(9), 1378-1389. doi:10.1093/pcp/pcn113 es_ES
dc.description.references Albacete, A. A., Martínez-Andújar, C., & Pérez-Alfocea, F. (2014). Hormonal and metabolic regulation of source–sink relations under salinity and drought: From plant survival to crop yield stability. Biotechnology Advances, 32(1), 12-30. doi:10.1016/j.biotechadv.2013.10.005 es_ES
dc.description.references Araújo, W. L., Tohge, T., Nunes-Nesi, A., Daloso, D. M., Nimick, M., Krahnert, I., … Fernie, A. R. (2012). Phosphonate Analogs of 2-Oxoglutarate Perturb Metabolism and Gene Expression in Illuminated Arabidopsis Leaves. Frontiers in Plant Science, 3. doi:10.3389/fpls.2012.00114 es_ES
dc.description.references Ariizumi, T., Shinozaki, Y., & Ezura, H. (2013). Genes that influence yield in tomato. Breeding Science, 63(1), 3-13. doi:10.1270/jsbbs.63.3 es_ES
dc.description.references Baldwin, E. A., Scott, J. W., Einstein, M. A., Malundo, T. M. M., Carr, B. T., Shewfelt, R. L., & Tandon, K. S. (1998). Relationship between Sensory and Instrumental Analysis for Tomato Flavor. Journal of the American Society for Horticultural Science, 123(5), 906-915. doi:10.21273/jashs.123.5.906 es_ES
dc.description.references BAO, H., CHEN, X., LV, S., JIANG, P., FENG, J., FAN, P., … LI, Y. (2014). Virus-induced gene silencing reveals control of reactive oxygen species accumulation and salt tolerance in tomato byγ-aminobutyric acid metabolic pathway. Plant, Cell & Environment, 38(3), 600-613. doi:10.1111/pce.12419 es_ES
dc.description.references Barajas-López, J. de D., Tezycka, J., Travaglia, C. N., Serrato, A. J., Chueca, A., Thormählen, I., … Sahrawy, M. (2012). Expression of the chloroplast thioredoxins f and m is linked to short-term changes in the sugar and thiol status in leaves of Pisum sativum. Journal of Experimental Botany, 63(13), 4887-4900. doi:10.1093/jxb/ers163 es_ES
dc.description.references Bucheli, P., Voirol, E., de la Torre, R., López, J., Rytz, A., Tanksley, S. D., & Pétiard, V. (1999). Definition of Nonvolatile Markers for Flavor of Tomato (Lycopersicon esculentumMill.) as Tools in Selection and Breeding. Journal of Agricultural and Food Chemistry, 47(2), 659-664. doi:10.1021/jf980875l es_ES
dc.description.references Cebolla-Cornejo, J., Valcárcel, M., Herrero-Martínez, J. M., Roselló, S., & Nuez, F. (2012). High efficiency joint CZE determination of sugars and acids in vegetables and fruits. ELECTROPHORESIS, 33(15), 2416-2423. doi:10.1002/elps.201100640 es_ES
dc.description.references Centeno, D. C., Osorio, S., Nunes-Nesi, A., Bertolo, A. L. F., Carneiro, R. T., Araújo, W. L., … Fernie, A. R. (2011). Malate Plays a Crucial Role in Starch Metabolism, Ripening, and Soluble Solid Content of Tomato Fruit and Affects Postharvest Softening. The Plant Cell, 23(1), 162-184. doi:10.1105/tpc.109.072231 es_ES
dc.description.references Chen, K.-M., Holmström, M., Raksajit, W., Suorsa, M., Piippo, M., & Aro, E.-M. (2010). Small chloroplast-targeted DnaJ proteins are involved in optimization of photosynthetic reactions in Arabidopsis thaliana. BMC Plant Biology, 10(1), 43. doi:10.1186/1471-2229-10-43 es_ES
dc.description.references Chen, Z.-H., Walker, R. P., T�csi, L. I., Lea, P. J., & Leegood, R. C. (2004). Phosphoenolpyruvate carboxykinase in cucumber plants is increased both by ammonium and by acidification, and is present in the phloem. Planta, 219(1), 48-58. doi:10.1007/s00425-004-1220-y es_ES
dc.description.references Chow, C.-N., Zheng, H.-Q., Wu, N.-Y., Chien, C.-H., Huang, H.-D., Lee, T.-Y., … Chang, W.-C. (2015). PlantPAN 2.0: an update of plant promoter analysis navigator for reconstructing transcriptional regulatory networks in plants. Nucleic Acids Research, 44(D1), D1154-D1160. doi:10.1093/nar/gkv1035 es_ES
dc.description.references Corrales, A., Carrillo, L., Lasierra, P., Nebauer, S. G., Dominguez‐Figueroa, J., Renau‐Morata, B., … Medina, J. (2017). Multifaceted role of cycling DOF factor 3 (CDF3) in the regulation of flowering time and abiotic stress responses inArabidopsis. Plant, Cell & Environment, 40(5), 748-764. doi:10.1111/pce.12894 es_ES
dc.description.references Corrales, A.-R., Nebauer, S. G., Carrillo, L., Fernández-Nohales, P., Marqués, J., Renau-Morata, B., … Medina, J. (2014). Characterization of tomato Cycling Dof Factors reveals conserved and new functions in the control of flowering time and abiotic stress responses. Journal of Experimental Botany, 65(4), 995-1012. doi:10.1093/jxb/ert451 es_ES
dc.description.references Cortés-Olmos, C., Leiva-Brondo, M., Roselló, J., Raigón, M. D., & Cebolla-Cornejo, J. (2014). The role of traditional varieties of tomato as sources of functional compounds. Journal of the Science of Food and Agriculture, 94(14), 2888-2904. doi:10.1002/jsfa.6629 es_ES
dc.description.references Datta, K., Baisakh, N., Ganguly, M., Krishnan, S., Yamaguchi Shinozaki, K., & Datta, S. K. (2012). Overexpression of Arabidopsis and Rice stress genes’ inducible transcription factor confers drought and salinity tolerance to rice. Plant Biotechnology Journal, 10(5), 579-586. doi:10.1111/j.1467-7652.2012.00688.x es_ES
dc.description.references Dicko, M. H., Gruppen, H., Barro, C., Traore, A. S., van Berkel, W. J. H., & Voragen, A. G. J. (2005). Impact of Phenolic Compounds and Related Enzymes in Sorghum Varieties for Resistance and Susceptibility to Biotic and Abiotic Stresses. Journal of Chemical Ecology, 31(11), 2671-2688. doi:10.1007/s10886-005-7619-5 es_ES
dc.description.references Du, Z., Zhou, X., Ling, Y., Zhang, Z., & Su, Z. (2010). agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Research, 38(suppl_2), W64-W70. doi:10.1093/nar/gkq310 es_ES
dc.description.references Ellul, P., Garcia-Sogo, B., Pineda, B., Ríos, G., Roig, L., & Moreno, V. (2003). The ploidy level of transgenic plants in Agrobacterium-mediated transformation of tomato cotyledons (Lycopersicon esculentum L.Mill.) is genotype and procedure dependent. Theoretical and Applied Genetics, 106(2), 231-238. doi:10.1007/s00122-002-0928-y es_ES
dc.description.references FLEXAS, J. (2002). Drought-inhibition of Photosynthesis in C3 Plants: Stomatal and Non-stomatal Limitations Revisited. Annals of Botany, 89(2), 183-189. doi:10.1093/aob/mcf027 es_ES
dc.description.references FLEXAS, J., DIAZ-ESPEJO, A., GALMÉS, J., KALDENHOFF, R., MEDRANO, H., & RIBAS-CARBO, M. (2007). Rapid variations of mesophyll conductance in response to changes in CO2concentration around leaves. Plant, Cell & Environment, 30(10), 1284-1298. doi:10.1111/j.1365-3040.2007.01700.x es_ES
dc.description.references Fornara, F., Montaigu, A., Sánchez‐Villarreal, A., Takahashi, Y., Ver Loren van Themaat, E., Huettel, B., … Coupland, G. (2015). The GI – CDF module of Arabidopsis affects freezing tolerance and growth as well as flowering. The Plant Journal, 81(5), 695-706. doi:10.1111/tpj.12759 es_ES
dc.description.references Foyer, C. H., Noctor, G., & Verrier, P. (s. f.). Photosynthetic Carbon–Nitrogen Interactions: Modelling Inter-Pathway Control and Signalling. Control of Primary Metabolism in Plants, 325-347. doi:10.1002/9780470988640.ch12 es_ES
dc.description.references Godfray, H. C. J., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., Nisbett, N., … Whiteley, R. (2010). The future of the global food system. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1554), 2769-2777. doi:10.1098/rstb.2010.0180 es_ES
dc.description.references Gupta, N., Gupta, A. K., & Kumar, A. (2011). Spatial distribution pattern analysis of Dof1 transcription factor in different tissues of three Eleusine coracana genotypes differing in their grain colour, yield and photosynthetic efficiency. Molecular Biology Reports, 39(3), 2089-2095. doi:10.1007/s11033-011-0956-2 es_ES
dc.description.references Harley, P. C., Loreto, F., Di Marco, G., & Sharkey, T. D. (1992). Theoretical Considerations when Estimating the Mesophyll Conductance to CO2 Flux by Analysis of the Response of Photosynthesis to CO2. Plant Physiology, 98(4), 1429-1436. doi:10.1104/pp.98.4.1429 es_ES
dc.description.references Hichri, I., Muhovski, Y., Clippe, A., Žižková, E., Dobrev, P. I., Motyka, V., & Lutts, S. (2015). SlDREB2, a tomato dehydration-responsive element-binding 2 transcription factor, mediates salt stress tolerance in tomato and Arabidopsis. Plant, Cell & Environment, 39(1), 62-79. doi:10.1111/pce.12591 es_ES
dc.description.references Hoffman, N. E., Ko, K., Milkowski, D., & Pichersky, E. (1991). Isolation and characterization of tomato cDNA and genomic clones encoding the ubiquitin gene ubi3. Plant Molecular Biology, 17(6), 1189-1201. doi:10.1007/bf00028735 es_ES
dc.description.references Hong, Y., Zhang, H., Huang, L., Li, D., & Song, F. (2016). Overexpression of a Stress-Responsive NAC Transcription Factor Gene ONAC022 Improves Drought and Salt Tolerance in Rice. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.00004 es_ES
dc.description.references Huang, D., Wang, S., Zhang, B., Shang-Guan, K., Shi, Y., Zhang, D., … Zhou, Y. (2015). A Gibberellin-Mediated DELLA-NAC Signaling Cascade Regulates Cellulose Synthesis in Rice. The Plant Cell, 27(6), 1681-1696. doi:10.1105/tpc.15.00015 es_ES
dc.description.references Kasahara, H., Hanada, A., Kuzuyama, T., Takagi, M., Kamiya, Y., & Yamaguchi, S. (2002). Contribution of the Mevalonate and Methylerythritol Phosphate Pathways to the Biosynthesis of Gibberellins inArabidopsis. Journal of Biological Chemistry, 277(47), 45188-45194. doi:10.1074/jbc.m208659200 es_ES
dc.description.references Mechanisms and dynamics in the thiol/disulphide redox regulatory network: transmitters, sensors and targets261268 KönigJ. MuthuramalingamM. DietzK. J. 10.1016/j.pbi.2011.12.00222226570Curr. Opin. Plant Biol.152012 es_ES
dc.description.references Kördel, B., & Kutschera, U. (2000). Effects of Gibberellin on Cellulose Biosynthesis and Membrane-associated Sucrose Synthase Activity in Pea Internodes. Journal of Plant Physiology, 156(4), 570-573. doi:10.1016/s0176-1617(00)80176-5 es_ES
dc.description.references Krasensky, J., & Jonak, C. (2012). Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. Journal of Experimental Botany, 63(4), 1593-1608. doi:10.1093/jxb/err460 es_ES
dc.description.references Kurai, T., Wakayama, M., Abiko, T., Yanagisawa, S., Aoki, N., & Ohsugi, R. (2011). Introduction of the ZmDof1 gene into rice enhances carbon and nitrogen assimilation under low-nitrogen conditions. Plant Biotechnology Journal, 9(8), 826-837. doi:10.1111/j.1467-7652.2011.00592.x es_ES
dc.description.references Lam, H.-M., Coschigano, K. T., Oliveira, I. C., Melo-Oliveira, R., & Coruzzi, G. M. (1996). THE MOLECULAR-GENETICS OF NITROGEN ASSIMILATION INTO AMINO ACIDS IN HIGHER PLANTS. Annual Review of Plant Physiology and Plant Molecular Biology, 47(1), 569-593. doi:10.1146/annurev.arplant.47.1.569 es_ES
dc.description.references Lee, Y. (2002). Expression of alpha -Expansin and Expansin-Like Genes in Deepwater Rice. PLANT PHYSIOLOGY, 130(3), 1396-1405. doi:10.1104/pp.008888 es_ES
dc.description.references Leivar, P., & Monte, E. (2014). PIFs: Systems Integrators in Plant Development. The Plant Cell, 26(1), 56-78. doi:10.1105/tpc.113.120857 es_ES
dc.description.references Li, R., Yu, C., Li, Y., Lam, T.-W., Yiu, S.-M., Kristiansen, K., & Wang, J. (2009). SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics, 25(15), 1966-1967. doi:10.1093/bioinformatics/btp336 es_ES
dc.description.references Liu, Z., Zhang, Y., Liu, R., Hao, H., Wang, Z., & Bi, Y. (2011). Phytochrome interacting factors (PIFs) are essential regulators for sucrose-induced hypocotyl elongation in Arabidopsis. Journal of Plant Physiology, 168(15), 1771-1779. doi:10.1016/j.jplph.2011.04.009 es_ES
dc.description.references Livak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25(4), 402-408. doi:10.1006/meth.2001.1262 es_ES
dc.description.references Long, S. P., Marshall-Colon, A., & Zhu, X.-G. (2015). Meeting the Global Food Demand of the Future by Engineering Crop Photosynthesis and Yield Potential. Cell, 161(1), 56-66. doi:10.1016/j.cell.2015.03.019 es_ES
dc.description.references LONG, S. P., ZHU, X.-G., NAIDU, S. L., & ORT, D. R. (2006). Can improvement in photosynthesis increase crop yields? Plant, Cell and Environment, 29(3), 315-330. doi:10.1111/j.1365-3040.2005.01493.x es_ES
dc.description.references De Lucas, M., & Prat, S. (2014). PIFs get BRright: PHYTOCHROME INTERACTING FACTORs as integrators of light and hormonal signals. New Phytologist, 202(4), 1126-1141. doi:10.1111/nph.12725 es_ES
dc.description.references Mariotti, L., Picciarelli, P., Lombardi, L., & Ceccarelli, N. (2011). Fruit-set and Early Fruit Growth in Tomato are Associated with Increases in Indoleacetic Acid, Cytokinin, and Bioactive Gibberellin Contents. Journal of Plant Growth Regulation, 30(4), 405-415. doi:10.1007/s00344-011-9204-1 es_ES
dc.description.references Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L., & Wold, B. (2008). Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods, 5(7), 621-628. doi:10.1038/nmeth.1226 es_ES
dc.description.references Nebauer, S. G., Renau-Morata, B., Guardiola, J. L., & Molina, R.-V. (2011). Photosynthesis down-regulation precedes carbohydrate accumulation under sink limitation in Citrus. Tree Physiology, 31(2), 169-177. doi:10.1093/treephys/tpq103 es_ES
dc.description.references Osorio, S., Vallarino, J. G., Szecowka, M., Ufaz, S., Tzin, V., Angelovici, R., … Fernie, A. R. (2012). Alteration of the Interconversion of Pyruvate and Malate in the Plastid or Cytosol of Ripening Tomato Fruit Invokes Diverse Consequences on Sugar But Similar Effects on Cellular Organic Acid, Metabolism, and Transitory Starch Accumulation. Plant Physiology, 161(2), 628-643. doi:10.1104/pp.112.211094 es_ES
dc.description.references Pandey, S. K., Nookaraju, A., Upadhyaya, C. P., Gururani, M. A., Venkatesh, J., Kim, D.-H., & Park, S. W. (2011). An Update on Biotechnological Approaches for Improving Abiotic Stress Tolerance in Tomato. Crop Science, 51(6), 2303-2324. doi:10.2135/cropsci2010.10.0579 es_ES
dc.description.references Pareek, A., Sopory, S. K., & Bohnert, H. J. (Eds.). (2010). Abiotic Stress Adaptation in Plants. doi:10.1007/978-90-481-3112-9 es_ES
dc.description.references Paul, M. J., & Foyer, C. H. (2001). Sink regulation of photosynthesis. Journal of Experimental Botany, 52(360), 1383-1400. doi:10.1093/jexbot/52.360.1383 es_ES
dc.description.references Pulido, P., Perello, C., & Rodriguez-Concepcion, M. (2012). New Insights into Plant Isoprenoid Metabolism. Molecular Plant, 5(5), 964-967. doi:10.1093/mp/sss088 es_ES
dc.description.references Renau-Morata, B., Sánchez-Perales, M., Medina, J., Molina, R., Corrales, R., Carrillo, L., … Nebauer, S. (2014). Salinity Assay in Tomato. BIO-PROTOCOL, 4(16). doi:10.21769/bioprotoc.1215 es_ES
dc.description.references Roche, D. (2015). Stomatal Conductance Is Essential for Higher Yield Potential of C3Crops. Critical Reviews in Plant Sciences, 34(4), 429-453. doi:10.1080/07352689.2015.1023677 es_ES
dc.description.references Roitsch, T., & González, M.-C. (2004). Function and regulation of plant invertases: sweet sensations. Trends in Plant Science, 9(12), 606-613. doi:10.1016/j.tplants.2004.10.009 es_ES
dc.description.references Ruan, Y.-L. (2014). Sucrose Metabolism: Gateway to Diverse Carbon Use and Sugar Signaling. Annual Review of Plant Biology, 65(1), 33-67. doi:10.1146/annurev-arplant-050213-040251 es_ES
dc.description.references Sah, S. K., Reddy, K. R., & Li, J. (2016). Abscisic Acid and Abiotic Stress Tolerance in Crop Plants. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.00571 es_ES
dc.description.references Saibo, N. J. M., Lourenço, T., & Oliveira, M. M. (2008). Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses. Annals of Botany, 103(4), 609-623. doi:10.1093/aob/mcn227 es_ES
dc.description.references Serrato, A. J., Fernández-Trijueque, J., Barajas-López, J.-D., Chueca, A., & Sahrawy, M. (2013). Plastid thioredoxins: a «one-for-all» redox-signaling system in plants. Frontiers in Plant Science, 4. doi:10.3389/fpls.2013.00463 es_ES
dc.description.references Shelp, B. (1999). Metabolism and functions of gamma-aminobutyric acid. Trends in Plant Science, 4(11), 446-452. doi:10.1016/s1360-1385(99)01486-7 es_ES
dc.description.references Shimizu, H., Torii, K., Araki, T., & Endo, M. (2016). Importance of epidermal clocks for regulation of hypocotyl elongation throughPIF4andIAA29. Plant Signaling & Behavior, 11(2), e1143999. doi:10.1080/15592324.2016.1143999 es_ES
dc.description.references Sinclair, T. R., Purcell, L. C., & Sneller, C. H. (2004). Crop transformation and the challenge to increase yield potential. Trends in Plant Science, 9(2), 70-75. doi:10.1016/j.tplants.2003.12.008 es_ES
dc.description.references STITT, M., & KRAPP, A. (1999). The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background. Plant, Cell and Environment, 22(6), 583-621. doi:10.1046/j.1365-3040.1999.00386.x es_ES
dc.description.references Supek, F., Bošnjak, M., Škunca, N., & Šmuc, T. (2011). REVIGO Summarizes and Visualizes Long Lists of Gene Ontology Terms. PLoS ONE, 6(7), e21800. doi:10.1371/journal.pone.0021800 es_ES
dc.description.references Tezara, W., Mitchell, V. J., Driscoll, S. D., & Lawlor, D. W. (1999). Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature, 401(6756), 914-917. doi:10.1038/44842 es_ES
dc.description.references Varshney, R. K., Bansal, K. C., Aggarwal, P. K., Datta, S. K., & Craufurd, P. Q. (2011). Agricultural biotechnology for crop improvement in a variable climate: hope or hype? Trends in Plant Science, 16(7), 363-371. doi:10.1016/j.tplants.2011.03.004 es_ES
dc.description.references Voss, I., Sunil, B., Scheibe, R., & Raghavendra, A. S. (2013). Emerging concept for the role of photorespiration as an important part of abiotic stress response. Plant Biology, 15(4), 713-722. doi:10.1111/j.1438-8677.2012.00710.x es_ES
dc.description.references Wang, B., Guo, G., Wang, C., Lin, Y., Wang, X., Zhao, M., … Pan, L. (2010). Survey of the transcriptome of Aspergillus oryzae via massively parallel mRNA sequencing. Nucleic Acids Research, 38(15), 5075-5087. doi:10.1093/nar/gkq256 es_ES
dc.description.references Yamaguchi-Shinozaki, K., & Shinozaki, K. (2006). TRANSCRIPTIONAL REGULATORY NETWORKS IN CELLULAR RESPONSES AND TOLERANCE TO DEHYDRATION AND COLD STRESSES. Annual Review of Plant Biology, 57(1), 781-803. doi:10.1146/annurev.arplant.57.032905.105444 es_ES
dc.description.references Yanagisawa, S. (2002). The Dof family of plant transcription factors. Trends in Plant Science, 7(12), 555-560. doi:10.1016/s1360-1385(02)02362-2 es_ES
dc.description.references Yanagisawa, S. (2004). Dof Domain Proteins: Plant-Specific Transcription Factors Associated with Diverse Phenomena Unique to Plants. Plant and Cell Physiology, 45(4), 386-391. doi:10.1093/pcp/pch055 es_ES
dc.description.references Yanagisawa, S., Akiyama, A., Kisaka, H., Uchimiya, H., & Miwa, T. (2004). Metabolic engineering with Dof1 transcription factor in plants: Improved nitrogen assimilation and growth under low-nitrogen conditions. Proceedings of the National Academy of Sciences, 101(20), 7833-7838. doi:10.1073/pnas.0402267101 es_ES
dc.description.references Yanagisawa, S., & Schmidt, R. J. (1999). Diversity and similarity among recognition sequences of Dof transcription factors. The Plant Journal, 17(2), 209-214. doi:10.1046/j.1365-313x.1999.00363.x es_ES
dc.description.references Yin, Y.-G., Tominaga, T., Iijima, Y., Aoki, K., Shibata, D., Ashihara, H., … Matsukura, C. (2010). Metabolic Alterations in Organic Acids and γ-Aminobutyric Acid in Developing Tomato (Solanum lycopersicum L.) Fruits. Plant and Cell Physiology, 51(8), 1300-1314. doi:10.1093/pcp/pcq090 es_ES
dc.description.references Zushi, K., & Matsuzoe, N. (2006). FREE AMINO ACID CONTENTS OF TOMATO FRUIT GROWN UNDER WATER AND SALINITY STRESSES. Acta Horticulturae, (724), 91-96. doi:10.17660/actahortic.2006.724.10 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem