- -

Formic acid oxidation on platinum electrodes: A detailed mechanism supported by experiments and calculations on well-defined surfaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Formic acid oxidation on platinum electrodes: A detailed mechanism supported by experiments and calculations on well-defined surfaces

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ferre Vilaplana, Adolfo es_ES
dc.contributor.author Perales, Juan Víctor es_ES
dc.contributor.author Buso-Rogero, Carlos es_ES
dc.contributor.author Feliu, Juan es_ES
dc.contributor.author Herrero, Enrique es_ES
dc.date.accessioned 2020-07-30T03:35:12Z
dc.date.available 2020-07-30T03:35:12Z
dc.date.issued 2017-11-07 es_ES
dc.identifier.issn 2050-7488 es_ES
dc.identifier.uri http://hdl.handle.net/10251/148895
dc.description.abstract [EN] In spite of the fact that the formic acid oxidation reaction on electrode surfaces has been extensively investigated, a detailed mechanism explaining all the available experimental evidence on platinum has not been yet described. Herein, using a combined experimental and computational approach, the key elements in the mechanism of the formic acid oxidation reaction on platinum have been completely elucidated, not only for the direct path, through an active intermediate, but also for the CO formation route. The experimental results suggest that the direct oxidation path on platinum takes place in the presence of bidentate adsorbed formate. However, the results reported here provide evidence that this species is not the active intermediate. Monodentate adsorbed formate, whose evolution to the much more favorable bidentate form would be hindered by the presence of neighboring adsorbates, has been found to be the true active intermediate. Moreover, it is found that adsorbed formic acid would have a higher acid constant than in solution, which suggests that adsorbed formate can be originated not only from solution formate but also from formic acid. The CO formation path on platinum can proceed, also from monodentate adsorbed formate, through a dehydrogenation process toward the surface, during which the adsorbate transitions from a Pt-O adsorption mode to a Pt-C one, to form carboxylate. From this last configuration, the C-OH bond is cleaved, on the surface, yielding adsorbed CO and OH. The results and mechanisms reported here provide the best explanation for the whole of the experimental evidence available to date about this reaction, including pH, surface structure and electrode potential effects. es_ES
dc.description.sponsorship This work has been financially supported by the MCINN-FEDER (Spain) and Generalitat Valenciana (Feder) through projects CTQ2016-76221-P and PROMETEOII/2014/013, respectively. es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Journal of Materials Chemistry A es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Single-Crystal electrodes es_ES
dc.subject Irreversibly adsorbed adatoms es_ES
dc.subject Modified stepped electrodes es_ES
dc.subject Poison formation reaction es_ES
dc.subject Noble-Metal electrodes es_ES
dc.subject Electrocatalytic oxidation es_ES
dc.subject Infrared-Spectroscopy es_ES
dc.subject Pt(111) electrodes es_ES
dc.subject Heterogeneous electrocatalysis es_ES
dc.subject Adsorption behavior es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Formic acid oxidation on platinum electrodes: A detailed mechanism supported by experiments and calculations on well-defined surfaces es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c7ta07116g es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2016-76221-P/ES/ESTRUCTURA INTERFACIAL Y REACTIVIDAD ELECTROQUIMICA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F013/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Ferre Vilaplana, A.; Perales, JV.; Buso-Rogero, C.; Feliu, J.; Herrero, E. (2017). Formic acid oxidation on platinum electrodes: A detailed mechanism supported by experiments and calculations on well-defined surfaces. Journal of Materials Chemistry A. 5(41):21773-21784. https://doi.org/10.1039/c7ta07116g es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/c7ta07116g es_ES
dc.description.upvformatpinicio 21773 es_ES
dc.description.upvformatpfin 21784 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 5 es_ES
dc.description.issue 41 es_ES
dc.relation.pasarela S\342927 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Bagotzky, V. S., Vassiliev, Y. B., & Khazova, O. A. (1977). Generalized scheme of chemisorption, electrooxidation and electroreduction of simple organic compounds on platinum group metals. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 81(2), 229-238. doi:10.1016/s0022-0728(77)80019-3 es_ES
dc.description.references Beden, B., Bewick, A., & Lamy, C. (1983). A comparative study of formic acid adsorption on a platinum electrode by both electrochemical and emirs techniques. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 150(1-2), 505-511. doi:10.1016/s0022-0728(83)80230-7 es_ES
dc.description.references Capon, A., & Parsons, R. (1973). The oxidation of formic acid at noble metal electrodes Part III. Intermediates and mechanism on platinum electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 45(2), 205-231. doi:10.1016/s0022-0728(73)80158-5 es_ES
dc.description.references Capon, A., & Parson, R. (1973). The oxidation of formic acid at noble metal electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 44(1), 1-7. doi:10.1016/s0022-0728(73)80508-x es_ES
dc.description.references Wolter, O., Willsau, J., & Heitbaum, J. (1985). Reaction Pathways of the Anodic Oxidation of Formic Acid on Pt Evidenced by 18O Labeling—A DEMS Study. Journal of The Electrochemical Society, 132(7), 1635-1638. doi:10.1149/1.2114179 es_ES
dc.description.references Willsau, J., & Heitbaum, J. (1986). Analysis of adsorbed intermediates and determination of surface potential shifts by dems. Electrochimica Acta, 31(8), 943-948. doi:10.1016/0013-4686(86)80008-1 es_ES
dc.description.references Chen, Y. X., Miki, A., Ye, S., Sakai, H., & Osawa, M. (2003). Formate, an Active Intermediate for Direct Oxidation of Methanol on Pt Electrode. Journal of the American Chemical Society, 125(13), 3680-3681. doi:10.1021/ja029044t es_ES
dc.description.references Samjeské, G., & Osawa, M. (2005). Current Oscillations during Formic Acid Oxidation on a Pt Electrode: Insight into the Mechanism by Time-Resolved IR Spectroscopy. Angewandte Chemie International Edition, 44(35), 5694-5698. doi:10.1002/anie.200501009 es_ES
dc.description.references Cuesta, A., Cabello, G., Gutiérrez, C., & Osawa, M. (2011). Adsorbed formate: the key intermediate in the oxidation of formic acid on platinum electrodes. Physical Chemistry Chemical Physics, 13(45), 20091. doi:10.1039/c1cp22498k es_ES
dc.description.references Cuesta, A., Cabello, G., Osawa, M., & Gutiérrez, C. (2012). Mechanism of the Electrocatalytic Oxidation of Formic Acid on Metals. ACS Catalysis, 2(5), 728-738. doi:10.1021/cs200661z es_ES
dc.description.references Chen, Y.-X., Heinen, M., Jusys, Z., & Behm, R. J. (2006). Bridge-Bonded Formate:  Active Intermediate or Spectator Species in Formic Acid Oxidation on a Pt Film Electrode?†. Langmuir, 22(25), 10399-10408. doi:10.1021/la060928q es_ES
dc.description.references Chen, Y. X., Heinen, M., Jusys, Z., & Behm, R. J. (2006). Kinetics and Mechanism of the Electrooxidation of Formic Acid—Spectroelectrochemical Studies in a Flow Cell. Angewandte Chemie International Edition, 45(6), 981-985. doi:10.1002/anie.200502172 es_ES
dc.description.references Chen, Y.-X., Heinen, M., Jusys, Z., & Behm, R. J. (2007). Kinetic Isotope Effects in Complex Reaction Networks: Formic Acid Electro-Oxidation. ChemPhysChem, 8(3), 380-385. doi:10.1002/cphc.200600520 es_ES
dc.description.references Joo, J., Uchida, T., Cuesta, A., Koper, M. T. M., & Osawa, M. (2013). Importance of Acid–Base Equilibrium in Electrocatalytic Oxidation of Formic Acid on Platinum. Journal of the American Chemical Society, 135(27), 9991-9994. doi:10.1021/ja403578s es_ES
dc.description.references Joo, J., Uchida, T., Cuesta, A., Koper, M. T. M., & Osawa, M. (2014). The effect of pH on the electrocatalytic oxidation of formic acid/formate on platinum: A mechanistic study by surface-enhanced infrared spectroscopy coupled with cyclic voltammetry. Electrochimica Acta, 129, 127-136. doi:10.1016/j.electacta.2014.02.040 es_ES
dc.description.references Brimaud, S., Solla-Gullón, J., Weber, I., Feliu, J. M., & Behm, R. J. (2014). Formic Acid Electrooxidation on Noble-Metal Electrodes: Role and Mechanistic Implications of pH, Surface Structure, and Anion Adsorption. ChemElectroChem, 1(6), 1075-1083. doi:10.1002/celc.201400011 es_ES
dc.description.references Perales-Rondón, J. V., Brimaud, S., Solla-Gullón, J., Herrero, E., Jürgen Behm, R., & Feliu, J. M. (2015). Further Insights into the Formic Acid Oxidation Mechanism on Platinum: pH and Anion Adsorption Effects. Electrochimica Acta, 180, 479-485. doi:10.1016/j.electacta.2015.08.155 es_ES
dc.description.references Clavilier, J., Parsons, R., Durand, R., Lamy, C., & Leger, J. M. (1981). Formic acid oxidation on single crystal platinum electrodes. Comparison with polycrystalline platinum. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 124(1-2), 321-326. doi:10.1016/s0022-0728(81)80311-7 es_ES
dc.description.references Adžić, R. R., Tripković, A. V., & O’Grady, W. E. (1982). Structural effects in electrocatalysis. Nature, 296(5853), 137-138. doi:10.1038/296137a0 es_ES
dc.description.references Ferre-Vilaplana, A., Perales-Rondón, J. V., Feliu, J. M., & Herrero, E. (2014). Understanding the Effect of the Adatoms in the Formic Acid Oxidation Mechanism on Pt(111) Electrodes. ACS Catalysis, 5(2), 645-654. doi:10.1021/cs501729j es_ES
dc.description.references Perales-Rondón, J. V., Herrero, E., & Feliu, J. M. (2015). On the activation energy of the formic acid oxidation reaction on platinum electrodes. Journal of Electroanalytical Chemistry, 742, 90-96. doi:10.1016/j.jelechem.2015.02.003 es_ES
dc.description.references Clavilier, J., Armand, D., Sun, S. G., & Petit, M. (1986). Electrochemical adsorption behaviour of platinum stepped surfaces in sulphuric acid solutions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 205(1-2), 267-277. doi:10.1016/0022-0728(86)90237-8 es_ES
dc.description.references C. Korzeniewski , V.Climent and J. M.Feliu, in Electroanalytical Chemistry: A Series of Advances, ed. A. J. Bard and C. Zoski, CRC Press, Boca Raton, 2012, vol. 24, pp. 75–169 es_ES
dc.description.references N. Garcia-Araez , V.Climent and J.Feliu, in Mod Asp Electrochem, ed. C. G. Vayenas, Springer, New York, 2011, vol. 51, ch. 1, pp. 1–105 es_ES
dc.description.references Grozovski, V., Climent, V., Herrero, E., & Feliu, J. M. (2009). Intrinsic Activity and Poisoning Rate for HCOOH Oxidation at Pt(100) and Vicinal Surfaces Containing Monoatomic (111) Steps. ChemPhysChem, 10(11), 1922-1926. doi:10.1002/cphc.200900261 es_ES
dc.description.references Delley, B. (1990). An all‐electron numerical method for solving the local density functional for polyatomic molecules. The Journal of Chemical Physics, 92(1), 508-517. doi:10.1063/1.458452 es_ES
dc.description.references Delley, B. (2002). Hardness conserving semilocal pseudopotentials. Physical Review B, 66(15). doi:10.1103/physrevb.66.155125 es_ES
dc.description.references Hammer, B., Hansen, L. B., & Nørskov, J. K. (1999). Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Physical Review B, 59(11), 7413-7421. doi:10.1103/physrevb.59.7413 es_ES
dc.description.references Delley, B. (2000). From molecules to solids with the DMol3 approach. The Journal of Chemical Physics, 113(18), 7756-7764. doi:10.1063/1.1316015 es_ES
dc.description.references Delley, B. (2006). The conductor-like screening model for polymers and surfaces. Molecular Simulation, 32(2), 117-123. doi:10.1080/08927020600589684 es_ES
dc.description.references Neugebauer, J., & Scheffler, M. (1992). Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111). Physical Review B, 46(24), 16067-16080. doi:10.1103/physrevb.46.16067 es_ES
dc.description.references Henkelman, G., & Jónsson, H. (2000). Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. The Journal of Chemical Physics, 113(22), 9978-9985. doi:10.1063/1.1323224 es_ES
dc.description.references Keith, J. A., & Jacob, T. (2010). Theoretical Studies of Potential-Dependent and Competing Mechanisms of the Electrocatalytic Oxygen Reduction Reaction on Pt(111). Angewandte Chemie International Edition, 49(49), 9521-9525. doi:10.1002/anie.201004794 es_ES
dc.description.references Monkhorst, H. J., & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Physical Review B, 13(12), 5188-5192. doi:10.1103/physrevb.13.5188 es_ES
dc.description.references Grozovski, V., Vidal-Iglesias, F. J., Herrero, E., & Feliu, J. M. (2011). Adsorption of Formate and Its Role as Intermediate in Formic Acid Oxidation on Platinum Electrodes. ChemPhysChem, 12(9), 1641-1644. doi:10.1002/cphc.201100257 es_ES
dc.description.references Rodes, A., Pastor, E., & Iwasita, T. (1994). An FTIR study on the adsorption of acetate at the basal planes of platinum single-crystal electrodes. Journal of Electroanalytical Chemistry, 376(1-2), 109-118. doi:10.1016/0022-0728(94)03585-7 es_ES
dc.description.references Xu, J., Yuan, D., Yang, F., Mei, D., Zhang, Z., & Chen, Y.-X. (2013). On the mechanism of the direct pathway for formic acid oxidation at a Pt(111) electrode. Physical Chemistry Chemical Physics, 15(12), 4367. doi:10.1039/c3cp44074e es_ES
dc.description.references Perales-Rondón, J. V., Herrero, E., & Feliu, J. M. (2014). Effects of the anion adsorption and pH on the formic acid oxidation reaction on Pt(111) electrodes. Electrochimica Acta, 140, 511-517. doi:10.1016/j.electacta.2014.06.057 es_ES
dc.description.references Herrero, E., Franaszczuk, K., & Wieckowski, A. (1994). Electrochemistry of Methanol at Low Index Crystal Planes of Platinum: An Integrated Voltammetric and Chronoamperometric Study. The Journal of Physical Chemistry, 98(19), 5074-5083. doi:10.1021/j100070a022 es_ES
dc.description.references Wang, H.-F., & Liu, Z.-P. (2009). Formic Acid Oxidation at Pt/H2O Interface from Periodic DFT Calculations Integrated with a Continuum Solvation Model. The Journal of Physical Chemistry C, 113(40), 17502-17508. doi:10.1021/jp9059888 es_ES
dc.description.references Schwarz, K. A., Sundararaman, R., Moffat, T. P., & Allison, T. C. (2015). Formic acid oxidation on platinum: a simple mechanistic study. Physical Chemistry Chemical Physics, 17(32), 20805-20813. doi:10.1039/c5cp03045e es_ES
dc.description.references Perales-Rondón, J. V., Ferre-Vilaplana, A., Feliu, J. M., & Herrero, E. (2014). Oxidation Mechanism of Formic Acid on the Bismuth Adatom-Modified Pt(111) Surface. Journal of the American Chemical Society, 136(38), 13110-13113. doi:10.1021/ja505943h es_ES
dc.description.references Clavilier, J. (1987). Pulsed linear sweep voltammetry with pulses of constant level in a potential scale, a polarization demanding condition in the study of platinum single crystal electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 236(1-2), 87-94. doi:10.1016/0022-0728(87)88020-8 es_ES
dc.description.references Fernandez-Vega, A., Feliu, J. M., Aldaz, A., & Clavilier, J. (1991). Heterogeneous electrocatalysis on well-defined platinum surfaces modified by controlled amounts of irreversibly adsorbed adatoms. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 305(2), 229-240. doi:10.1016/0022-0728(91)85521-p es_ES
dc.description.references Grozovski, V., Climent, V., Herrero, E., & Feliu, J. M. (2010). Intrinsic activity and poisoning rate for HCOOH oxidation on platinum stepped surfaces. Physical Chemistry Chemical Physics, 12(31), 8822. doi:10.1039/b925472b es_ES
dc.description.references Grozovski, V., Solla-Gullón, J., Climent, V., Herrero, E., & Feliu, J. M. (2010). Formic Acid Oxidation on Shape-Controlled Pt Nanoparticles Studied by Pulsed Voltammetry. The Journal of Physical Chemistry C, 114(32), 13802-13812. doi:10.1021/jp104755b es_ES
dc.description.references Koper, M. T. M. (2013). Theory of multiple proton–electron transfer reactions and its implications for electrocatalysis. Chemical Science, 4(7), 2710. doi:10.1039/c3sc50205h es_ES
dc.description.references Koper, M. T. M. (2015). Volcano Activity Relationships for Proton-Coupled Electron Transfer Reactions in Electrocatalysis. Topics in Catalysis, 58(18-20), 1153-1158. doi:10.1007/s11244-015-0489-3 es_ES
dc.description.references Neurock, M., Janik, M., & Wieckowski, A. (2009). A first principles comparison of the mechanism and site requirements for the electrocatalytic oxidation of methanol and formic acid over Pt. Faraday Discuss., 140, 363-378. doi:10.1039/b804591g es_ES
dc.description.references Gao, W., Keith, J. A., Anton, J., & Jacob, T. (2010). Theoretical Elucidation of the Competitive Electro-oxidation Mechanisms of Formic Acid on Pt(111). Journal of the American Chemical Society, 132(51), 18377-18385. doi:10.1021/ja1083317 es_ES
dc.description.references Gamboa-Aldeco, M. E., Herrero, E., Zelenay, P. S., & Wieckowski, A. (1993). Adsorption of bisulfate anion on a Pt(100) electrode: A comparison with Pt(111) and Pt(poly). Journal of Electroanalytical Chemistry, 348(1-2), 451-457. doi:10.1016/0022-0728(93)80151-7 es_ES
dc.description.references Clavilier, J., & Sun, S. G. (1986). Electrochemical study of the chemisorbed species formed from formic acid dissociation at platinum single crystal electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 199(2), 471-480. doi:10.1016/0022-0728(86)80021-3 es_ES
dc.description.references Sun, S. G., Clavilier, J., & Bewick, A. (1988). The mechanism of electrocatalytic oxidation of formic acid on Pt (100) and Pt (111) in sulphuric acid solution: an emirs study. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 240(1-2), 147-159. doi:10.1016/0022-0728(88)80319-x es_ES
dc.description.references Herrero, E., Fernández-Vega, A., Feliu, J. M., & Aldaz, A. (1993). Poison formation reaction from formic acid and methanol on Pt(111) electrodes modified by irreversibly adsorbed Bi and As. Journal of Electroanalytical Chemistry, 350(1-2), 73-88. doi:10.1016/0022-0728(93)80197-p es_ES
dc.description.references Herrero, E., Feliu, J. M., & Aldaz, A. (1994). Poison formation reaction from formic acid on Pt(100) electrodes modified by irreversibly adsorbed bismuth and antimony. Journal of Electroanalytical Chemistry, 368(1-2), 101-108. doi:10.1016/0022-0728(93)03032-k es_ES
dc.description.references Iwasita, T., Xia, X., Herrero, E., & Liess, H.-D. (1996). Early Stages during the Oxidation of HCOOH on Single-Crystal Pt Electrodes As Characterized by Infrared Spectroscopy. Langmuir, 12(17), 4260-4265. doi:10.1021/la960264s es_ES
dc.description.references Corrigan, D. S., & Weaver, M. J. (1988). Mechanisms of formic acid, methanol, and carbon monoxide electrooxidation at platinum as examined by single potential alteration infrared spectroscopy. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 241(1-2), 143-162. doi:10.1016/0022-0728(88)85123-4 es_ES
dc.description.references Chang, S. C., Leung, L. W. H., & Weaver, M. J. (1990). Metal crystallinity effects in electrocatalysis as probed by real-time FTIR spectroscopy: electrooxidation of formic acid, methanol, and ethanol on ordered low-index platinum surfaces. The Journal of Physical Chemistry, 94(15), 6013-6021. doi:10.1021/j100378a072 es_ES
dc.description.references Clavilier, J., Fernandez-Vega, A., Feliu, J. M., & Aldaz, A. (1989). Heterogeneous electrocatalysis on well defined platinum surfaces modified by controlled amounts of irreversibly adsorbed adatoms. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 258(1), 89-100. doi:10.1016/0022-0728(89)85164-2 es_ES
dc.description.references Herrero, E., Climent, V., & Feliu, J. M. (2000). On the different adsorption behavior of bismuth, sulfur, selenium and tellurium on a Pt(775) stepped surface. Electrochemistry Communications, 2(9), 636-640. doi:10.1016/s1388-2481(00)00093-x es_ES
dc.description.references Maciá, M. (1999). Formic acid self-poisoning on bismuth-modified Pt(755) and Pt(775) electrodes. Electrochemistry Communications, 1(2), 87-89. doi:10.1016/s1388-2481(99)00009-0 es_ES
dc.description.references Maciá, M. D., Herrero, E., Feliu, J. M., & Aldaz, A. (2001). Formic acid self-poisoning on bismuth-modified stepped electrodes. Journal of Electroanalytical Chemistry, 500(1-2), 498-509. doi:10.1016/s0022-0728(00)00389-2 es_ES
dc.description.references Maciá, M. ., Herrero, E., & Feliu, J. . (2002). Formic acid self-poisoning on adatom-modified stepped electrodes. Electrochimica Acta, 47(22-23), 3653-3661. doi:10.1016/s0013-4686(02)00335-3 es_ES
dc.description.references Garcia-Araez, N., Climent, V., Herrero, E., Feliu, J. M., & Lipkowski, J. (2005). Determination of the Gibbs excess of H adsorbed at a Pt(111) electrode surface in the presence of co-adsorbed chloride. Journal of Electroanalytical Chemistry, 582(1-2), 76-84. doi:10.1016/j.jelechem.2005.01.031 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem