Mostrar el registro sencillo del ítem
dc.contributor.author | Ferre Vilaplana, Adolfo | es_ES |
dc.contributor.author | Perales, Juan Víctor | es_ES |
dc.contributor.author | Buso-Rogero, Carlos | es_ES |
dc.contributor.author | Feliu, Juan | es_ES |
dc.contributor.author | Herrero, Enrique | es_ES |
dc.date.accessioned | 2020-07-30T03:35:12Z | |
dc.date.available | 2020-07-30T03:35:12Z | |
dc.date.issued | 2017-11-07 | es_ES |
dc.identifier.issn | 2050-7488 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/148895 | |
dc.description.abstract | [EN] In spite of the fact that the formic acid oxidation reaction on electrode surfaces has been extensively investigated, a detailed mechanism explaining all the available experimental evidence on platinum has not been yet described. Herein, using a combined experimental and computational approach, the key elements in the mechanism of the formic acid oxidation reaction on platinum have been completely elucidated, not only for the direct path, through an active intermediate, but also for the CO formation route. The experimental results suggest that the direct oxidation path on platinum takes place in the presence of bidentate adsorbed formate. However, the results reported here provide evidence that this species is not the active intermediate. Monodentate adsorbed formate, whose evolution to the much more favorable bidentate form would be hindered by the presence of neighboring adsorbates, has been found to be the true active intermediate. Moreover, it is found that adsorbed formic acid would have a higher acid constant than in solution, which suggests that adsorbed formate can be originated not only from solution formate but also from formic acid. The CO formation path on platinum can proceed, also from monodentate adsorbed formate, through a dehydrogenation process toward the surface, during which the adsorbate transitions from a Pt-O adsorption mode to a Pt-C one, to form carboxylate. From this last configuration, the C-OH bond is cleaved, on the surface, yielding adsorbed CO and OH. The results and mechanisms reported here provide the best explanation for the whole of the experimental evidence available to date about this reaction, including pH, surface structure and electrode potential effects. | es_ES |
dc.description.sponsorship | This work has been financially supported by the MCINN-FEDER (Spain) and Generalitat Valenciana (Feder) through projects CTQ2016-76221-P and PROMETEOII/2014/013, respectively. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | The Royal Society of Chemistry | es_ES |
dc.relation.ispartof | Journal of Materials Chemistry A | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Single-Crystal electrodes | es_ES |
dc.subject | Irreversibly adsorbed adatoms | es_ES |
dc.subject | Modified stepped electrodes | es_ES |
dc.subject | Poison formation reaction | es_ES |
dc.subject | Noble-Metal electrodes | es_ES |
dc.subject | Electrocatalytic oxidation | es_ES |
dc.subject | Infrared-Spectroscopy | es_ES |
dc.subject | Pt(111) electrodes | es_ES |
dc.subject | Heterogeneous electrocatalysis | es_ES |
dc.subject | Adsorption behavior | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.title | Formic acid oxidation on platinum electrodes: A detailed mechanism supported by experiments and calculations on well-defined surfaces | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1039/c7ta07116g | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CTQ2016-76221-P/ES/ESTRUCTURA INTERFACIAL Y REACTIVIDAD ELECTROQUIMICA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F013/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.description.bibliographicCitation | Ferre Vilaplana, A.; Perales, JV.; Buso-Rogero, C.; Feliu, J.; Herrero, E. (2017). Formic acid oxidation on platinum electrodes: A detailed mechanism supported by experiments and calculations on well-defined surfaces. Journal of Materials Chemistry A. 5(41):21773-21784. https://doi.org/10.1039/c7ta07116g | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1039/c7ta07116g | es_ES |
dc.description.upvformatpinicio | 21773 | es_ES |
dc.description.upvformatpfin | 21784 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 5 | es_ES |
dc.description.issue | 41 | es_ES |
dc.relation.pasarela | S\342927 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Bagotzky, V. S., Vassiliev, Y. B., & Khazova, O. A. (1977). Generalized scheme of chemisorption, electrooxidation and electroreduction of simple organic compounds on platinum group metals. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 81(2), 229-238. doi:10.1016/s0022-0728(77)80019-3 | es_ES |
dc.description.references | Beden, B., Bewick, A., & Lamy, C. (1983). A comparative study of formic acid adsorption on a platinum electrode by both electrochemical and emirs techniques. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 150(1-2), 505-511. doi:10.1016/s0022-0728(83)80230-7 | es_ES |
dc.description.references | Capon, A., & Parsons, R. (1973). The oxidation of formic acid at noble metal electrodes Part III. Intermediates and mechanism on platinum electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 45(2), 205-231. doi:10.1016/s0022-0728(73)80158-5 | es_ES |
dc.description.references | Capon, A., & Parson, R. (1973). The oxidation of formic acid at noble metal electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 44(1), 1-7. doi:10.1016/s0022-0728(73)80508-x | es_ES |
dc.description.references | Wolter, O., Willsau, J., & Heitbaum, J. (1985). Reaction Pathways of the Anodic Oxidation of Formic Acid on Pt Evidenced by 18O Labeling—A DEMS Study. Journal of The Electrochemical Society, 132(7), 1635-1638. doi:10.1149/1.2114179 | es_ES |
dc.description.references | Willsau, J., & Heitbaum, J. (1986). Analysis of adsorbed intermediates and determination of surface potential shifts by dems. Electrochimica Acta, 31(8), 943-948. doi:10.1016/0013-4686(86)80008-1 | es_ES |
dc.description.references | Chen, Y. X., Miki, A., Ye, S., Sakai, H., & Osawa, M. (2003). Formate, an Active Intermediate for Direct Oxidation of Methanol on Pt Electrode. Journal of the American Chemical Society, 125(13), 3680-3681. doi:10.1021/ja029044t | es_ES |
dc.description.references | Samjeské, G., & Osawa, M. (2005). Current Oscillations during Formic Acid Oxidation on a Pt Electrode: Insight into the Mechanism by Time-Resolved IR Spectroscopy. Angewandte Chemie International Edition, 44(35), 5694-5698. doi:10.1002/anie.200501009 | es_ES |
dc.description.references | Cuesta, A., Cabello, G., Gutiérrez, C., & Osawa, M. (2011). Adsorbed formate: the key intermediate in the oxidation of formic acid on platinum electrodes. Physical Chemistry Chemical Physics, 13(45), 20091. doi:10.1039/c1cp22498k | es_ES |
dc.description.references | Cuesta, A., Cabello, G., Osawa, M., & Gutiérrez, C. (2012). Mechanism of the Electrocatalytic Oxidation of Formic Acid on Metals. ACS Catalysis, 2(5), 728-738. doi:10.1021/cs200661z | es_ES |
dc.description.references | Chen, Y.-X., Heinen, M., Jusys, Z., & Behm, R. J. (2006). Bridge-Bonded Formate: Active Intermediate or Spectator Species in Formic Acid Oxidation on a Pt Film Electrode?†. Langmuir, 22(25), 10399-10408. doi:10.1021/la060928q | es_ES |
dc.description.references | Chen, Y. X., Heinen, M., Jusys, Z., & Behm, R. J. (2006). Kinetics and Mechanism of the Electrooxidation of Formic Acid—Spectroelectrochemical Studies in a Flow Cell. Angewandte Chemie International Edition, 45(6), 981-985. doi:10.1002/anie.200502172 | es_ES |
dc.description.references | Chen, Y.-X., Heinen, M., Jusys, Z., & Behm, R. J. (2007). Kinetic Isotope Effects in Complex Reaction Networks: Formic Acid Electro-Oxidation. ChemPhysChem, 8(3), 380-385. doi:10.1002/cphc.200600520 | es_ES |
dc.description.references | Joo, J., Uchida, T., Cuesta, A., Koper, M. T. M., & Osawa, M. (2013). Importance of Acid–Base Equilibrium in Electrocatalytic Oxidation of Formic Acid on Platinum. Journal of the American Chemical Society, 135(27), 9991-9994. doi:10.1021/ja403578s | es_ES |
dc.description.references | Joo, J., Uchida, T., Cuesta, A., Koper, M. T. M., & Osawa, M. (2014). The effect of pH on the electrocatalytic oxidation of formic acid/formate on platinum: A mechanistic study by surface-enhanced infrared spectroscopy coupled with cyclic voltammetry. Electrochimica Acta, 129, 127-136. doi:10.1016/j.electacta.2014.02.040 | es_ES |
dc.description.references | Brimaud, S., Solla-Gullón, J., Weber, I., Feliu, J. M., & Behm, R. J. (2014). Formic Acid Electrooxidation on Noble-Metal Electrodes: Role and Mechanistic Implications of pH, Surface Structure, and Anion Adsorption. ChemElectroChem, 1(6), 1075-1083. doi:10.1002/celc.201400011 | es_ES |
dc.description.references | Perales-Rondón, J. V., Brimaud, S., Solla-Gullón, J., Herrero, E., Jürgen Behm, R., & Feliu, J. M. (2015). Further Insights into the Formic Acid Oxidation Mechanism on Platinum: pH and Anion Adsorption Effects. Electrochimica Acta, 180, 479-485. doi:10.1016/j.electacta.2015.08.155 | es_ES |
dc.description.references | Clavilier, J., Parsons, R., Durand, R., Lamy, C., & Leger, J. M. (1981). Formic acid oxidation on single crystal platinum electrodes. Comparison with polycrystalline platinum. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 124(1-2), 321-326. doi:10.1016/s0022-0728(81)80311-7 | es_ES |
dc.description.references | Adžić, R. R., Tripković, A. V., & O’Grady, W. E. (1982). Structural effects in electrocatalysis. Nature, 296(5853), 137-138. doi:10.1038/296137a0 | es_ES |
dc.description.references | Ferre-Vilaplana, A., Perales-Rondón, J. V., Feliu, J. M., & Herrero, E. (2014). Understanding the Effect of the Adatoms in the Formic Acid Oxidation Mechanism on Pt(111) Electrodes. ACS Catalysis, 5(2), 645-654. doi:10.1021/cs501729j | es_ES |
dc.description.references | Perales-Rondón, J. V., Herrero, E., & Feliu, J. M. (2015). On the activation energy of the formic acid oxidation reaction on platinum electrodes. Journal of Electroanalytical Chemistry, 742, 90-96. doi:10.1016/j.jelechem.2015.02.003 | es_ES |
dc.description.references | Clavilier, J., Armand, D., Sun, S. G., & Petit, M. (1986). Electrochemical adsorption behaviour of platinum stepped surfaces in sulphuric acid solutions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 205(1-2), 267-277. doi:10.1016/0022-0728(86)90237-8 | es_ES |
dc.description.references | C. Korzeniewski , V.Climent and J. M.Feliu, in Electroanalytical Chemistry: A Series of Advances, ed. A. J. Bard and C. Zoski, CRC Press, Boca Raton, 2012, vol. 24, pp. 75–169 | es_ES |
dc.description.references | N. Garcia-Araez , V.Climent and J.Feliu, in Mod Asp Electrochem, ed. C. G. Vayenas, Springer, New York, 2011, vol. 51, ch. 1, pp. 1–105 | es_ES |
dc.description.references | Grozovski, V., Climent, V., Herrero, E., & Feliu, J. M. (2009). Intrinsic Activity and Poisoning Rate for HCOOH Oxidation at Pt(100) and Vicinal Surfaces Containing Monoatomic (111) Steps. ChemPhysChem, 10(11), 1922-1926. doi:10.1002/cphc.200900261 | es_ES |
dc.description.references | Delley, B. (1990). An all‐electron numerical method for solving the local density functional for polyatomic molecules. The Journal of Chemical Physics, 92(1), 508-517. doi:10.1063/1.458452 | es_ES |
dc.description.references | Delley, B. (2002). Hardness conserving semilocal pseudopotentials. Physical Review B, 66(15). doi:10.1103/physrevb.66.155125 | es_ES |
dc.description.references | Hammer, B., Hansen, L. B., & Nørskov, J. K. (1999). Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Physical Review B, 59(11), 7413-7421. doi:10.1103/physrevb.59.7413 | es_ES |
dc.description.references | Delley, B. (2000). From molecules to solids with the DMol3 approach. The Journal of Chemical Physics, 113(18), 7756-7764. doi:10.1063/1.1316015 | es_ES |
dc.description.references | Delley, B. (2006). The conductor-like screening model for polymers and surfaces. Molecular Simulation, 32(2), 117-123. doi:10.1080/08927020600589684 | es_ES |
dc.description.references | Neugebauer, J., & Scheffler, M. (1992). Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111). Physical Review B, 46(24), 16067-16080. doi:10.1103/physrevb.46.16067 | es_ES |
dc.description.references | Henkelman, G., & Jónsson, H. (2000). Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. The Journal of Chemical Physics, 113(22), 9978-9985. doi:10.1063/1.1323224 | es_ES |
dc.description.references | Keith, J. A., & Jacob, T. (2010). Theoretical Studies of Potential-Dependent and Competing Mechanisms of the Electrocatalytic Oxygen Reduction Reaction on Pt(111). Angewandte Chemie International Edition, 49(49), 9521-9525. doi:10.1002/anie.201004794 | es_ES |
dc.description.references | Monkhorst, H. J., & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Physical Review B, 13(12), 5188-5192. doi:10.1103/physrevb.13.5188 | es_ES |
dc.description.references | Grozovski, V., Vidal-Iglesias, F. J., Herrero, E., & Feliu, J. M. (2011). Adsorption of Formate and Its Role as Intermediate in Formic Acid Oxidation on Platinum Electrodes. ChemPhysChem, 12(9), 1641-1644. doi:10.1002/cphc.201100257 | es_ES |
dc.description.references | Rodes, A., Pastor, E., & Iwasita, T. (1994). An FTIR study on the adsorption of acetate at the basal planes of platinum single-crystal electrodes. Journal of Electroanalytical Chemistry, 376(1-2), 109-118. doi:10.1016/0022-0728(94)03585-7 | es_ES |
dc.description.references | Xu, J., Yuan, D., Yang, F., Mei, D., Zhang, Z., & Chen, Y.-X. (2013). On the mechanism of the direct pathway for formic acid oxidation at a Pt(111) electrode. Physical Chemistry Chemical Physics, 15(12), 4367. doi:10.1039/c3cp44074e | es_ES |
dc.description.references | Perales-Rondón, J. V., Herrero, E., & Feliu, J. M. (2014). Effects of the anion adsorption and pH on the formic acid oxidation reaction on Pt(111) electrodes. Electrochimica Acta, 140, 511-517. doi:10.1016/j.electacta.2014.06.057 | es_ES |
dc.description.references | Herrero, E., Franaszczuk, K., & Wieckowski, A. (1994). Electrochemistry of Methanol at Low Index Crystal Planes of Platinum: An Integrated Voltammetric and Chronoamperometric Study. The Journal of Physical Chemistry, 98(19), 5074-5083. doi:10.1021/j100070a022 | es_ES |
dc.description.references | Wang, H.-F., & Liu, Z.-P. (2009). Formic Acid Oxidation at Pt/H2O Interface from Periodic DFT Calculations Integrated with a Continuum Solvation Model. The Journal of Physical Chemistry C, 113(40), 17502-17508. doi:10.1021/jp9059888 | es_ES |
dc.description.references | Schwarz, K. A., Sundararaman, R., Moffat, T. P., & Allison, T. C. (2015). Formic acid oxidation on platinum: a simple mechanistic study. Physical Chemistry Chemical Physics, 17(32), 20805-20813. doi:10.1039/c5cp03045e | es_ES |
dc.description.references | Perales-Rondón, J. V., Ferre-Vilaplana, A., Feliu, J. M., & Herrero, E. (2014). Oxidation Mechanism of Formic Acid on the Bismuth Adatom-Modified Pt(111) Surface. Journal of the American Chemical Society, 136(38), 13110-13113. doi:10.1021/ja505943h | es_ES |
dc.description.references | Clavilier, J. (1987). Pulsed linear sweep voltammetry with pulses of constant level in a potential scale, a polarization demanding condition in the study of platinum single crystal electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 236(1-2), 87-94. doi:10.1016/0022-0728(87)88020-8 | es_ES |
dc.description.references | Fernandez-Vega, A., Feliu, J. M., Aldaz, A., & Clavilier, J. (1991). Heterogeneous electrocatalysis on well-defined platinum surfaces modified by controlled amounts of irreversibly adsorbed adatoms. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 305(2), 229-240. doi:10.1016/0022-0728(91)85521-p | es_ES |
dc.description.references | Grozovski, V., Climent, V., Herrero, E., & Feliu, J. M. (2010). Intrinsic activity and poisoning rate for HCOOH oxidation on platinum stepped surfaces. Physical Chemistry Chemical Physics, 12(31), 8822. doi:10.1039/b925472b | es_ES |
dc.description.references | Grozovski, V., Solla-Gullón, J., Climent, V., Herrero, E., & Feliu, J. M. (2010). Formic Acid Oxidation on Shape-Controlled Pt Nanoparticles Studied by Pulsed Voltammetry. The Journal of Physical Chemistry C, 114(32), 13802-13812. doi:10.1021/jp104755b | es_ES |
dc.description.references | Koper, M. T. M. (2013). Theory of multiple proton–electron transfer reactions and its implications for electrocatalysis. Chemical Science, 4(7), 2710. doi:10.1039/c3sc50205h | es_ES |
dc.description.references | Koper, M. T. M. (2015). Volcano Activity Relationships for Proton-Coupled Electron Transfer Reactions in Electrocatalysis. Topics in Catalysis, 58(18-20), 1153-1158. doi:10.1007/s11244-015-0489-3 | es_ES |
dc.description.references | Neurock, M., Janik, M., & Wieckowski, A. (2009). A first principles comparison of the mechanism and site requirements for the electrocatalytic oxidation of methanol and formic acid over Pt. Faraday Discuss., 140, 363-378. doi:10.1039/b804591g | es_ES |
dc.description.references | Gao, W., Keith, J. A., Anton, J., & Jacob, T. (2010). Theoretical Elucidation of the Competitive Electro-oxidation Mechanisms of Formic Acid on Pt(111). Journal of the American Chemical Society, 132(51), 18377-18385. doi:10.1021/ja1083317 | es_ES |
dc.description.references | Gamboa-Aldeco, M. E., Herrero, E., Zelenay, P. S., & Wieckowski, A. (1993). Adsorption of bisulfate anion on a Pt(100) electrode: A comparison with Pt(111) and Pt(poly). Journal of Electroanalytical Chemistry, 348(1-2), 451-457. doi:10.1016/0022-0728(93)80151-7 | es_ES |
dc.description.references | Clavilier, J., & Sun, S. G. (1986). Electrochemical study of the chemisorbed species formed from formic acid dissociation at platinum single crystal electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 199(2), 471-480. doi:10.1016/0022-0728(86)80021-3 | es_ES |
dc.description.references | Sun, S. G., Clavilier, J., & Bewick, A. (1988). The mechanism of electrocatalytic oxidation of formic acid on Pt (100) and Pt (111) in sulphuric acid solution: an emirs study. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 240(1-2), 147-159. doi:10.1016/0022-0728(88)80319-x | es_ES |
dc.description.references | Herrero, E., Fernández-Vega, A., Feliu, J. M., & Aldaz, A. (1993). Poison formation reaction from formic acid and methanol on Pt(111) electrodes modified by irreversibly adsorbed Bi and As. Journal of Electroanalytical Chemistry, 350(1-2), 73-88. doi:10.1016/0022-0728(93)80197-p | es_ES |
dc.description.references | Herrero, E., Feliu, J. M., & Aldaz, A. (1994). Poison formation reaction from formic acid on Pt(100) electrodes modified by irreversibly adsorbed bismuth and antimony. Journal of Electroanalytical Chemistry, 368(1-2), 101-108. doi:10.1016/0022-0728(93)03032-k | es_ES |
dc.description.references | Iwasita, T., Xia, X., Herrero, E., & Liess, H.-D. (1996). Early Stages during the Oxidation of HCOOH on Single-Crystal Pt Electrodes As Characterized by Infrared Spectroscopy. Langmuir, 12(17), 4260-4265. doi:10.1021/la960264s | es_ES |
dc.description.references | Corrigan, D. S., & Weaver, M. J. (1988). Mechanisms of formic acid, methanol, and carbon monoxide electrooxidation at platinum as examined by single potential alteration infrared spectroscopy. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 241(1-2), 143-162. doi:10.1016/0022-0728(88)85123-4 | es_ES |
dc.description.references | Chang, S. C., Leung, L. W. H., & Weaver, M. J. (1990). Metal crystallinity effects in electrocatalysis as probed by real-time FTIR spectroscopy: electrooxidation of formic acid, methanol, and ethanol on ordered low-index platinum surfaces. The Journal of Physical Chemistry, 94(15), 6013-6021. doi:10.1021/j100378a072 | es_ES |
dc.description.references | Clavilier, J., Fernandez-Vega, A., Feliu, J. M., & Aldaz, A. (1989). Heterogeneous electrocatalysis on well defined platinum surfaces modified by controlled amounts of irreversibly adsorbed adatoms. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 258(1), 89-100. doi:10.1016/0022-0728(89)85164-2 | es_ES |
dc.description.references | Herrero, E., Climent, V., & Feliu, J. M. (2000). On the different adsorption behavior of bismuth, sulfur, selenium and tellurium on a Pt(775) stepped surface. Electrochemistry Communications, 2(9), 636-640. doi:10.1016/s1388-2481(00)00093-x | es_ES |
dc.description.references | Maciá, M. (1999). Formic acid self-poisoning on bismuth-modified Pt(755) and Pt(775) electrodes. Electrochemistry Communications, 1(2), 87-89. doi:10.1016/s1388-2481(99)00009-0 | es_ES |
dc.description.references | Maciá, M. D., Herrero, E., Feliu, J. M., & Aldaz, A. (2001). Formic acid self-poisoning on bismuth-modified stepped electrodes. Journal of Electroanalytical Chemistry, 500(1-2), 498-509. doi:10.1016/s0022-0728(00)00389-2 | es_ES |
dc.description.references | Maciá, M. ., Herrero, E., & Feliu, J. . (2002). Formic acid self-poisoning on adatom-modified stepped electrodes. Electrochimica Acta, 47(22-23), 3653-3661. doi:10.1016/s0013-4686(02)00335-3 | es_ES |
dc.description.references | Garcia-Araez, N., Climent, V., Herrero, E., Feliu, J. M., & Lipkowski, J. (2005). Determination of the Gibbs excess of H adsorbed at a Pt(111) electrode surface in the presence of co-adsorbed chloride. Journal of Electroanalytical Chemistry, 582(1-2), 76-84. doi:10.1016/j.jelechem.2005.01.031 | es_ES |