- -

Assessment of biochar and hydrochar as minor to major constituents of growing media for containerized tomato production

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Assessment of biochar and hydrochar as minor to major constituents of growing media for containerized tomato production

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Fornes Sebastiá, Fernando es_ES
dc.contributor.author Belda Navarro, Rosa María es_ES
dc.contributor.author Fernández de Córdova Martínez, Pascual José es_ES
dc.contributor.author Cebolla Cornejo, Jaime es_ES
dc.date.accessioned 2020-07-30T03:35:16Z
dc.date.available 2020-07-30T03:35:16Z
dc.date.issued 2017-08-30 es_ES
dc.identifier.issn 0022-5142 es_ES
dc.identifier.uri http://hdl.handle.net/10251/148897
dc.description "This is the peer reviewed version of the following article: Fornes, Fernando, Rosa M Belda, Pascual Fernández de Córdova, and Jaime Cebolla-Cornejo. 2017. Assessment of Biochar and Hydrochar as Minor to Major Constituents of Growing Media for Containerized Tomato Production. Journal of the Science of Food and Agriculture 97 (11). Wiley: 3675 84. doi:10.1002/jsfa.8227, which has been published in final form at https://doi.org/10.1002/jsfa.8227. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving." es_ES
dc.description.abstract [EN] BACKGROUND: Chars are emerging materials as constituents of growth media. However, chars of different origin differ in their characteristics and more studies are needed to ratify them for such a role. The characteristics of coir mixed with 0%, 10%, 25%, 50%, 75%, and 100% (v/v) of two biochars, from forest waste (BCH-FW) and from olive mill waste (BCH-OMW), and one hydrochar, from forest waste (HYD-FW), and their effects on growth, yield and fruit quality of two tomato cultivars (Gransol RZ and Cuarenteno) were assessed. RESULTS: Chars negatively affected plant growth and yield but not fruit quality. The effect was related to the char dose and was larger in HYD-FW and BCH-FW than in BCH-OMW, despite the high salinity of the latter, and more acute in Cuarenteno than in Gransol RZ. The results were discussed on the basis of the large particle size of BCH-FW, which could have caused low nutrient solution retention and, hence, reduced plant nutrient uptake, and the highwater-holding capacity, poor aeration and large CO2 emission of HYD-FW, which could lead to root anoxia. CONCLUSION: BCH-OMW can be used at high proportion in media for tomato cultivation. The use of BCH-FW at a high proportion might be taken into consideration after adjusting particle size, yet this needs additional assays. HYD-FW is inadequate for soilless containerized tomato cultivation. (C) 2017 Society of Chemical Industry es_ES
dc.description.sponsorship This study was funded by the Universitat Politecnica de Valencia (Proyectos de nuevas Lineas de Investigacion Multidisciplinares; PAID-05-12). es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Journal of the Science of Food and Agriculture es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Biochar es_ES
dc.subject Growing media characteristics es_ES
dc.subject Hydrochar es_ES
dc.subject Tomato production es_ES
dc.subject Solanum lycopersicum es_ES
dc.subject.classification FISIOLOGIA VEGETAL es_ES
dc.subject.classification GENETICA es_ES
dc.title Assessment of biochar and hydrochar as minor to major constituents of growing media for containerized tomato production es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/jsfa.8227 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-05-12/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Producción Vegetal - Departament de Producció Vegetal es_ES
dc.description.bibliographicCitation Fornes Sebastiá, F.; Belda Navarro, RM.; Fernández De Córdova Martínez, PJ.; Cebolla Cornejo, J. (2017). Assessment of biochar and hydrochar as minor to major constituents of growing media for containerized tomato production. Journal of the Science of Food and Agriculture. 97(11):3675-3684. https://doi.org/10.1002/jsfa.8227 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/jsfa.8227 es_ES
dc.description.upvformatpinicio 3675 es_ES
dc.description.upvformatpfin 3684 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 97 es_ES
dc.description.issue 11 es_ES
dc.identifier.pmid 28106250 es_ES
dc.relation.pasarela S\324449 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Martí, R., Roselló, S., & Cebolla-Cornejo, J. (2016). Tomato as a Source of Carotenoids and Polyphenols Targeted to Cancer Prevention. Cancers, 8(6), 58. doi:10.3390/cancers8060058 es_ES
dc.description.references Dorais, M., Ehret, D. L., & Papadopoulos, A. P. (2008). Tomato (Solanum lycopersicum) health components: from the seed to the consumer. Phytochemistry Reviews, 7(2), 231-250. doi:10.1007/s11101-007-9085-x es_ES
dc.description.references Schmilewski, G. (2009). GROWING MEDIUM CONSTITUENTS USED IN THE EU. Acta Horticulturae, (819), 33-46. doi:10.17660/actahortic.2009.819.3 es_ES
dc.description.references Graber, E. R., Meller Harel, Y., Kolton, M., Cytryn, E., Silber, A., Rav David, D., … Elad, Y. (2010). Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant and Soil, 337(1-2), 481-496. doi:10.1007/s11104-010-0544-6 es_ES
dc.description.references Dumroese, R. K., Heiskanen, J., Englund, K., & Tervahauta, A. (2011). Pelleted biochar: Chemical and physical properties show potential use as a substrate in container nurseries. Biomass and Bioenergy, 35(5), 2018-2027. doi:10.1016/j.biombioe.2011.01.053 es_ES
dc.description.references Vaughn, S. F., Kenar, J. A., Thompson, A. R., & Peterson, S. C. (2013). Comparison of biochars derived from wood pellets and pelletized wheat straw as replacements for peat in potting substrates. Industrial Crops and Products, 51, 437-443. doi:10.1016/j.indcrop.2013.10.010 es_ES
dc.description.references Steiner, C., & Harttung, T. (2014). Biochar as a growing media additive and peat substitute. Solid Earth, 5(2), 995-999. doi:10.5194/se-5-995-2014 es_ES
dc.description.references Petruccelli, R., Bonetti, A., Traversi, M. L., Faraloni, C., Valagussa, M., & Pozzi, A. (2015). Influence of biochar application on nutritional quality of tomato (Lycopersicon esculentum). Crop and Pasture Science, 66(7), 747. doi:10.1071/cp14247 es_ES
dc.description.references Libra, J. A., Ro, K. S., Kammann, C., Funke, A., Berge, N. D., Neubauer, Y., … Emmerich, K.-H. (2011). Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis. Biofuels, 2(1), 71-106. doi:10.4155/bfs.10.81 es_ES
dc.description.references Fornes, F., Belda, R. M., & Lidón, A. (2015). Analysis of two biochars and one hydrochar from different feedstock: focus set on environmental, nutritional and horticultural considerations. Journal of Cleaner Production, 86, 40-48. doi:10.1016/j.jclepro.2014.08.057 es_ES
dc.description.references Kuzyakov, Y., Subbotina, I., Chen, H., Bogomolova, I., & Xu, X. (2009). Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. Soil Biology and Biochemistry, 41(2), 210-219. doi:10.1016/j.soilbio.2008.10.016 es_ES
dc.description.references Bargmann, I., Martens, R., Rillig, M. C., Kruse, A., & Kücke, M. (2013). Hydrochar amendment promotes microbial immobilization of mineral nitrogen. Journal of Plant Nutrition and Soil Science, 177(1), 59-67. doi:10.1002/jpln.201300154 es_ES
dc.description.references Bargmann, I., Rillig, M. C., Buss, W., Kruse, A., & Kuecke, M. (2013). Hydrochar and Biochar Effects on Germination of Spring Barley. Journal of Agronomy and Crop Science, 199(5), 360-373. doi:10.1111/jac.12024 es_ES
dc.description.references Akhtar, S. S., Li, G., Andersen, M. N., & Liu, F. (2014). Biochar enhances yield and quality of tomato under reduced irrigation. Agricultural Water Management, 138, 37-44. doi:10.1016/j.agwat.2014.02.016 es_ES
dc.description.references Vaccari, F. ., Maienza, A., Miglietta, F., Baronti, S., Di Lonardo, S., Giagnoni, L., … Genesio, L. (2015). Biochar stimulates plant growth but not fruit yield of processing tomato in a fertile soil. Agriculture, Ecosystems & Environment, 207, 163-170. doi:10.1016/j.agee.2015.04.015 es_ES
dc.description.references Cortés-Olmos, C., Valcárcel, J. V., Roselló, J., Díez, M. J., & Cebolla-Cornejo, J. (2015). Traditional Eastern Spanish varieties of tomato. Scientia Agricola, 72(5), 420-431. doi:10.1590/0103-9016-2014-0322 es_ES
dc.description.references Fornes, F., Belda, R. M., Carrión, C., Noguera, V., García-Agustín, P., & Abad, M. (2007). Pre-conditioning ornamental plants to drought by means of saline water irrigation as related to salinity tolerance. Scientia Horticulturae, 113(1), 52-59. doi:10.1016/j.scienta.2007.01.008 es_ES
dc.description.references Cebolla-Cornejo, J., Valcárcel, M., Herrero-Martínez, J. M., Roselló, S., & Nuez, F. (2012). High efficiency joint CZE determination of sugars and acids in vegetables and fruits. ELECTROPHORESIS, 33(15), 2416-2423. doi:10.1002/elps.201100640 es_ES
dc.description.references Cebolla-Cornejo, J., Roselló, S., Valcárcel, M., Serrano, E., Beltrán, J., & Nuez, F. (2011). Evaluation of Genotype and Environment Effects on Taste and Aroma Flavor Components of Spanish Fresh Tomato Varieties. Journal of Agricultural and Food Chemistry, 59(6), 2440-2450. doi:10.1021/jf1045427 es_ES
dc.description.references Dunlop, S. J., Arbestain, M. C., Bishop, P. A., & Wargent, J. J. (2015). Closing the Loop: Use of Biochar Produced from Tomato Crop Green waste as a Substrate for Soilless, Hydroponic Tomato Production. HortScience, 50(10), 1572-1581. doi:10.21273/hortsci.50.10.1572 es_ES
dc.description.references Bunt, A. C. (1988). Media and Mixes for Container-Grown Plants. doi:10.1007/978-94-011-7904-1 es_ES
dc.description.references Mukherjee, A., & Zimmerman, A. R. (2013). Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar–soil mixtures. Geoderma, 193-194, 122-130. doi:10.1016/j.geoderma.2012.10.002 es_ES
dc.description.references Schulz, H., & Glaser, B. (2012). Effects of biochar compared to organic and inorganic fertilizers on soil quality and plant growth in a greenhouse experiment. Journal of Plant Nutrition and Soil Science, 175(3), 410-422. doi:10.1002/jpln.201100143 es_ES
dc.description.references Fornes, F., Carrión, C., García-de-la-Fuente, R., Puchades, R., & Abad, M. (2010). Leaching composted lignocellulosic wastes to prepare container media: Feasibility and environmental concerns. Journal of Environmental Management, 91(8), 1747-1755. doi:10.1016/j.jenvman.2010.03.017 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem