- -

Use of natural diversity and biotechnology approaches to increase quality and nutritional content of tomato and grape

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Use of natural diversity and biotechnology approaches to increase quality and nutritional content of tomato and grape

Show full item record

Gascuel, Q.; Diretto, G.; Monforte Gilabert, AJ.; Fortes, AM.; Granell Richart, A. (2017). Use of natural diversity and biotechnology approaches to increase quality and nutritional content of tomato and grape. Frontiers in Plant Science. 8:11-34. https://doi.org/10.3389/fpls.2017.00652

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/148901

Files in this item

Item Metadata

Title: Use of natural diversity and biotechnology approaches to increase quality and nutritional content of tomato and grape
Author: Gascuel, Quentin Diretto, G. Monforte Gilabert, Antonio José Fortes, Ana Margarida GRANELL RICHART, ANTONIO
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Issued date:
Abstract:
[EN] Improving fruit quality has become a major goal in plant breeding. Direct approaches to tackling fruit quality traits specifically linked to consumer preferences and environmental friendliness, such as improved flavor, ...[+]
Subjects: Fruit quality , Germplasm , Grape , Omics , New plant breeding techniques , Tomato , QTLs
Copyrigths: Reconocimiento (by)
Source:
Frontiers in Plant Science. (eissn: 1664-462X )
DOI: 10.3389/fpls.2017.00652
Publisher:
Frontiers Media SA
Publisher version: https://doi.org/10.3389/fpls.2017.00652
Project ID:
info:eu-repo/grantAgreement/EC/H2020/634561/EU/Traditional tomato varieties and cultural practices: a case for agricultural diversification with impact on food security and health of European population/
info:eu-repo/grantAgreement/COST//CA15136/EU/European network to advance carotenoid research and applications in agro-food and health (EUROCAROTEN)/
info:eu-repo/grantAgreement/FCT/5876/136073/PT/Strategic Project - UI 4046 - 2014/
info:eu-repo/grantAgreement/ANR//ANR-11-BTBR-0005/FR/Ressources génétiques de tournesol pour l'amélioration de la stabilité de production d'huile sous c/SUNRISE/
info:eu-repo/grantAgreement/COST//FA1106/EU/An integrated systems approach to determine the developmental mechanisms controlling fleshy fruit quality in tomato and grapevine/
Thanks:
AF was provided by the Portuguese Foundation for Science and Technology (SFRH/BPD/100928/2014, FCT Investigator IF/00169/2015, PEst-OE/BIA/UI4046/2014), and to AG by the EC H2020 program (TRADITOM project 634561). QG ...[+]
Type: Artículo

References

Abbo, S., Pinhasi van-Oss, R., Gopher, A., Saranga, Y., Ofner, I., & Peleg, Z. (2014). Plant domestication versus crop evolution: a conceptual framework for cereals and grain legumes. Trends in Plant Science, 19(6), 351-360. doi:10.1016/j.tplants.2013.12.002

Agudelo-Romero, P., Erban, A., Rego, C., Carbonell-Bejerano, P., Nascimento, T., Sousa, L., … Fortes, A. M. (2015). Transcriptome and metabolome reprogramming in Vitis vinifera cv. Trincadeira berries upon infection with Botrytis cinerea. Journal of Experimental Botany, 66(7), 1769-1785. doi:10.1093/jxb/eru517

Agudelo-Romero, P., Erban, A., Sousa, L., Pais, M. S., Kopka, J., & Fortes, A. M. (2013). Search for Transcriptional and Metabolic Markers of Grape Pre-Ripening and Ripening and Insights into Specific Aroma Development in Three Portuguese Cultivars. PLoS ONE, 8(4), e60422. doi:10.1371/journal.pone.0060422 [+]
Abbo, S., Pinhasi van-Oss, R., Gopher, A., Saranga, Y., Ofner, I., & Peleg, Z. (2014). Plant domestication versus crop evolution: a conceptual framework for cereals and grain legumes. Trends in Plant Science, 19(6), 351-360. doi:10.1016/j.tplants.2013.12.002

Agudelo-Romero, P., Erban, A., Rego, C., Carbonell-Bejerano, P., Nascimento, T., Sousa, L., … Fortes, A. M. (2015). Transcriptome and metabolome reprogramming in Vitis vinifera cv. Trincadeira berries upon infection with Botrytis cinerea. Journal of Experimental Botany, 66(7), 1769-1785. doi:10.1093/jxb/eru517

Agudelo-Romero, P., Erban, A., Sousa, L., Pais, M. S., Kopka, J., & Fortes, A. M. (2013). Search for Transcriptional and Metabolic Markers of Grape Pre-Ripening and Ripening and Insights into Specific Aroma Development in Three Portuguese Cultivars. PLoS ONE, 8(4), e60422. doi:10.1371/journal.pone.0060422

Andersen, M. M., Landes, X., Xiang, W., Anyshchenko, A., Falhof, J., Østerberg, J. T., … Palmgren, M. G. (2015). Feasibility of new breeding techniques for organic farming. Trends in Plant Science, 20(7), 426-434. doi:10.1016/j.tplants.2015.04.011

Andrade-Sanchez, P., Gore, M. A., Heun, J. T., Thorp, K. R., Carmo-Silva, A. E., French, A. N., … White, J. W. (2014). Development and evaluation of a field-based high-throughput phenotyping platform. Functional Plant Biology, 41(1), 68. doi:10.1071/fp13126

Anesi, A., Stocchero, M., Dal Santo, S., Commisso, M., Zenoni, S., Ceoldo, S., … Guzzo, F. (2015). Towards a scientific interpretation of the terroir concept: plasticity of the grape berry metabolome. BMC Plant Biology, 15(1). doi:10.1186/s12870-015-0584-4

Aoki, K., Ogata, Y., Igarashi, K., Yano, K., Nagasaki, H., Kaminuma, E., & Toyoda, A. (2013). Functional genomics of tomato in a post-genome-sequencing phase. Breeding Science, 63(1), 14-20. doi:10.1270/jsbbs.63.14

Apel, W., & Bock, R. (2009). Enhancement of Carotenoid Biosynthesis in Transplastomic Tomatoes by Induced Lycopene-to-Provitamin A Conversion. Plant Physiology, 151(1), 59-66. doi:10.1104/pp.109.140533

Araus, J. L., & Cairns, J. E. (2014). Field high-throughput phenotyping: the new crop breeding frontier. Trends in Plant Science, 19(1), 52-61. doi:10.1016/j.tplants.2013.09.008

Arms, E. M., Bloom, A. J., & St. Clair, D. A. (2015). High-resolution mapping of a major effect QTL from wild tomato Solanum habrochaites that influences water relations under root chilling. Theoretical and Applied Genetics, 128(9), 1713-1724. doi:10.1007/s00122-015-2540-y

Bai, H., Tao, F., Xiao, D., Liu, F., & Zhang, H. (2015). Attribution of yield change for rice-wheat rotation system in China to climate change, cultivars and agronomic management in the past three decades. Climatic Change, 135(3-4), 539-553. doi:10.1007/s10584-015-1579-8

Bai, Y., & Lindhout, P. (2007). Domestication and Breeding of Tomatoes: What have We Gained and What Can We Gain in the Future? Annals of Botany, 100(5), 1085-1094. doi:10.1093/aob/mcm150

Barba, P., Cadle-Davidson, L., Harriman, J., Glaubitz, J. C., Brooks, S., Hyma, K., & Reisch, B. (2013). Grapevine powdery mildew resistance and susceptibility loci identified on a high-resolution SNP map. Theoretical and Applied Genetics, 127(1), 73-84. doi:10.1007/s00122-013-2202-x

Barbier de Reuille, P., Routier-Kierzkowska, A.-L., Kierzkowski, D., Bassel, G. W., Schüpbach, T., Tauriello, G., … Smith, R. S. (2015). MorphoGraphX: A platform for quantifying morphogenesis in 4D. eLife, 4. doi:10.7554/elife.05864

Barker, C. L., Donald, T., Pauquet, J., Ratnaparkhe, M. B., Bouquet, A., Adam-Blondon, A.-F., … Dry, I. (2005). Genetic and physical mapping of the grapevine powdery mildew resistance gene, Run1, using a bacterial artificial chromosome library. Theoretical and Applied Genetics, 111(2), 370-377. doi:10.1007/s00122-005-2030-8

Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., … Horvath, P. (2007). CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes. Science, 315(5819), 1709-1712. doi:10.1126/science.1138140

Barrantes, W., Fernández-del-Carmen, A., López-Casado, G., González-Sánchez, M. Á., Fernández-Muñoz, R., Granell, A., & Monforte, A. J. (2014). Highly efficient genomics-assisted development of a library of introgression lines of Solanum pimpinellifolium. Molecular Breeding, 34(4), 1817-1831. doi:10.1007/s11032-014-0141-0

Barsan, C., Zouine, M., Maza, E., Bian, W., Egea, I., Rossignol, M., … Pech, J.-C. (2012). Proteomic Analysis of Chloroplast-to-Chromoplast Transition in Tomato Reveals Metabolic Shifts Coupled with Disrupted Thylakoid Biogenesis Machinery and Elevated Energy-Production Components. Plant Physiology, 160(2), 708-725. doi:10.1104/pp.112.203679

Bélanger, M. ‐C., Roger, J. ‐M., Cartolaro, P., Viau, A. A., & Bellon‐Maurel, V. (2008). Detection of powdery mildew in grapevine using remotely sensed UV‐induced fluorescence. International Journal of Remote Sensing, 29(6), 1707-1724. doi:10.1080/01431160701395245

Berger, S., Papadopoulos, M., Schreiber, U., Kaiser, W., & Roitsch, T. (2004). Complex regulation of gene expression, photosynthesis and sugar levels by pathogen infection in tomato. Physiologia Plantarum, 122(4), 419-428. doi:10.1111/j.1399-3054.2004.00433.x

Bergougnoux, V. (2014). The history of tomato: From domestication to biopharming. Biotechnology Advances, 32(1), 170-189. doi:10.1016/j.biotechadv.2013.11.003

Bernacchi, D., Beck-Bunn, T., Eshed, Y., Lopez, J., Petiard, V., Uhlig, J., … Tanksley, S. (1998). Advanced backcross QTL analysis in tomato. I. Identification of QTLs for traits of agronomic importance from Lycopersicon hirsutum. Theoretical and Applied Genetics, 97(3), 381-397. doi:10.1007/s001220050908

Bernardo, R. (2008). Molecular Markers and Selection for Complex Traits in Plants: Learning from the Last 20 Years. Crop Science, 48(5), 1649-1664. doi:10.2135/cropsci2008.03.0131

Biais, B., Bénard, C., Beauvoit, B., Colombié, S., Prodhomme, D., Ménard, G., … Gibon, Y. (2014). Remarkable Reproducibility of Enzyme Activity Profiles in Tomato Fruits Grown under Contrasting Environments Provides a Roadmap for Studies of Fruit Metabolism. Plant Physiology, 164(3), 1204-1221. doi:10.1104/pp.113.231241

Bino, R. J., De Vos, C. H. R., Lieberman, M., Hall, R. D., Bovy, A., Jonker, H. H., … Levin, I. (2005). The light-hyperresponsive high pigment-2dg mutation of tomato: alterations in the fruit metabolome. New Phytologist, 166(2), 427-438. doi:10.1111/j.1469-8137.2005.01362.x

Blanca, J., Montero-Pau, J., Sauvage, C., Bauchet, G., Illa, E., Díez, M. J., … Cañizares, J. (2015). Genomic variation in tomato, from wild ancestors to contemporary breeding accessions. BMC Genomics, 16(1). doi:10.1186/s12864-015-1444-1

Boggess, M. V., Lippolis, J. D., Hurkman, W. J., Fagerquist, C. K., Briggs, S. P., Gomes, A. V., … Bala, K. (2013). The need for agriculture phenotyping: «Moving from genotype to phenotype». Journal of Proteomics, 93, 20-39. doi:10.1016/j.jprot.2013.03.021

Bogs, J., Ebadi, A., McDavid, D., & Robinson, S. P. (2005). Identification of the Flavonoid Hydroxylases from Grapevine and Their Regulation during Fruit Development. Plant Physiology, 140(1), 279-291. doi:10.1104/pp.105.073262

Bogs, J., Jaffé, F. W., Takos, A. M., Walker, A. R., & Robinson, S. P. (2007). The Grapevine Transcription Factor VvMYBPA1 Regulates Proanthocyanidin Synthesis during Fruit Development. Plant Physiology, 143(3), 1347-1361. doi:10.1104/pp.106.093203

Bolger, M. E., Weisshaar, B., Scholz, U., Stein, N., Usadel, B., & Mayer, K. F. (2014). Plant genome sequencing — applications for crop improvement. Current Opinion in Biotechnology, 26, 31-37. doi:10.1016/j.copbio.2013.08.019

Broman, K. W. (2004). The Genomes of Recombinant Inbred Lines. Genetics, 169(2), 1133-1146. doi:10.1534/genetics.104.035212

Brooks, C., Nekrasov, V., Lippman, Z. B., & Van Eck, J. (2014). Efficient Gene Editing in Tomato in the First Generation Using the Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-Associated9 System. PLANT PHYSIOLOGY, 166(3), 1292-1297. doi:10.1104/pp.114.247577

Burbidge, A., Grieve, T. M., Jackson, A., Thompson, andrew, McCarty, D. R., & Taylor, I. B. (1999). Characterization of the ABA-deficient tomato mutantnotabilisand its relationship with maizeVp14. The Plant Journal, 17(4), 427-431. doi:10.1046/j.1365-313x.1999.00386.x

Calafiore, R., Ruggieri, V., Raiola, A., Rigano, M. M., Sacco, A., Hassan, M. I., … Barone, A. (2016). Exploiting Genomics Resources to Identify Candidate Genes Underlying Antioxidants Content in Tomato Fruit. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.00397

Capel, C., Fernández del Carmen, A., Alba, J. M., Lima-Silva, V., Hernández-Gras, F., Salinas, M., … Lozano, R. (2015). Wide-genome QTL mapping of fruit quality traits in a tomato RIL population derived from the wild-relative species Solanum pimpinellifolium L. Theoretical and Applied Genetics, 128(10), 2019-2035. doi:10.1007/s00122-015-2563-4

Carrera, J., Fernández del Carmen, A., Fernández-Muñoz, R., Rambla, J. L., Pons, C., Jaramillo, A., … Granell, A. (2012). Fine-Tuning Tomato Agronomic Properties by Computational Genome Redesign. PLoS Computational Biology, 8(6), e1002528. doi:10.1371/journal.pcbi.1002528

Causse, M. (2004). A genetic map of candidate genes and QTLs involved in tomato fruit size and composition. Journal of Experimental Botany, 55(403), 1671-1685. doi:10.1093/jxb/erh207

Cavallini, E., Matus, J. T., Finezzo, L., Zenoni, S., Loyola, R., Guzzo, F., … Tornielli, G. B. (2015). The Phenylpropanoid Pathway Is Controlled at Different Branches by a Set of R2R3-MYB C2 Repressors in Grapevine. Plant Physiology, 167(4), 1448-1470. doi:10.1104/pp.114.256172

Cavanagh, C., Morell, M., Mackay, I., & Powell, W. (2008). From mutations to MAGIC: resources for gene discovery, validation and delivery in crop plants. Current Opinion in Plant Biology, 11(2), 215-221. doi:10.1016/j.pbi.2008.01.002

Cebolla-Cornejo, J., Roselló, S., & Nuez, F. (2013). Phenotypic and genetic diversity of Spanish tomato landraces. Scientia Horticulturae, 162, 150-164. doi:10.1016/j.scienta.2013.07.044

Čermák, T., Baltes, N. J., Čegan, R., Zhang, Y., & Voytas, D. F. (2015). High-frequency, precise modification of the tomato genome. Genome Biology, 16(1). doi:10.1186/s13059-015-0796-9

Chaerle, L., Lenk, S., Leinonen, I., Jones, H. G., Van Der Straeten, D., & Buschmann, C. (2009). Multi-sensor plant imaging: Towards the development of a stress-catalogue. Biotechnology Journal, 4(8), 1152-1167. doi:10.1002/biot.200800242

Chaïb, J., Lecomte, L., Buret, M., & Causse, M. (2006). Stability over genetic backgrounds, generations and years of quantitative trait locus (QTLs) for organoleptic quality in tomato. Theoretical and Applied Genetics, 112(5), 934-944. doi:10.1007/s00122-005-0197-7

Chalhoub, B., Denoeud, F., Liu, S., Parkin, I. A. P., Tang, H., Wang, X., … Samans, B. (2014). Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science, 345(6199), 950-953. doi:10.1126/science.1253435

Chappell, M. J., & LaValle, L. A. (2009). Food security and biodiversity: can we have both? An agroecological analysis. Agriculture and Human Values, 28(1), 3-26. doi:10.1007/s10460-009-9251-4

Chen, G., Hackett, R., Walker, D., Taylor, A., Lin, Z., & Grierson, D. (2004). Identification of a Specific Isoform of Tomato Lipoxygenase (TomloxC) Involved in the Generation of Fatty Acid-Derived Flavor Compounds. Plant Physiology, 136(1), 2641-2651. doi:10.1104/pp.104.041608

Chen, J., Wang, N., Fang, L.-C., Liang, Z.-C., Li, S.-H., & Wu, B.-H. (2015). Construction of a high-density genetic map and QTLs mapping for sugars and acids in grape berries. BMC Plant Biology, 15(1), 28. doi:10.1186/s12870-015-0428-2

Chen, X., Chen, F., Chen, Y., Gao, Q., Yang, X., Yuan, L., … Mi, G. (2012). Modern maize hybrids in Northeast China exhibit increased yield potential and resource use efficiency despite adverse climate change. Global Change Biology, 19(3), 923-936. doi:10.1111/gcb.12093

Coleman, C., Copetti, D., Cipriani, G., Hoffmann, S., Kozma, P., Kovacs, L., … Di Gaspero, G. (2009). The powdery mildew resistance gene REN1 co-segregates with an NBS-LRR gene cluster in two Central Asian grapevines. BMC Genetics, 10(1), 89. doi:10.1186/1471-2156-10-89

Collard, B. C. Y., Jahufer, M. Z. Z., Brouwer, J. B., & Pang, E. C. K. (2005). An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica, 142(1-2), 169-196. doi:10.1007/s10681-005-1681-5

Corrado, G., Piffanelli, P., Caramante, M., Coppola, M., & Rao, R. (2013). SNP genotyping reveals genetic diversity between cultivated landraces and contemporary varieties of tomato. BMC Genomics, 14(1), 835. doi:10.1186/1471-2164-14-835

Czemmel, S., Stracke, R., Weisshaar, B., Cordon, N., Harris, N. N., Walker, A. R., … Bogs, J. (2009). The Grapevine R2R3-MYB Transcription Factor VvMYBF1 Regulates Flavonol Synthesis in Developing Grape Berries. Plant Physiology, 151(3), 1513-1530. doi:10.1104/pp.109.142059

D’Ambrosio, C., Giorio, G., Marino, I., Merendino, A., Petrozza, A., Salfi, L., … Cellini, F. (2004). Virtually complete conversion of lycopene into β-carotene in fruits of tomato plants transformed with the tomato lycopene β-cyclase (tlcy-b) cDNA. Plant Science, 166(1), 207-214. doi:10.1016/j.plantsci.2003.09.015

D’Ambrosio, C., Stigliani, A. L., & Giorio, G. (2010). Overexpression of CrtR-b2 (carotene beta hydroxylase 2) from S. lycopersicum L. differentially affects xanthophyll synthesis and accumulation in transgenic tomato plants. Transgenic Research, 20(1), 47-60. doi:10.1007/s11248-010-9387-4

D’Esposito, D., Ferriello, F., Molin, A. D., Diretto, G., Sacco, A., Minio, A., … Ercolano, M. R. (2017). Unraveling the complexity of transcriptomic, metabolomic and quality environmental response of tomato fruit. BMC Plant Biology, 17(1). doi:10.1186/s12870-017-1008-4

Paula de Toledo Thomazella, D., Brail, Q., Dahlbeck, D., & Staskawicz, B. (2016). CRISPR-Cas9 mediated mutagenesis of a DMR6 ortholog in tomato confers broad-spectrum disease resistance. doi:10.1101/064824

De Vos, R. C., Moco, S., Lommen, A., Keurentjes, J. J., Bino, R. J., & Hall, R. D. (2007). Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nature Protocols, 2(4), 778-791. doi:10.1038/nprot.2007.95

Deery, D., Jimenez-Berni, J., Jones, H., Sirault, X., & Furbank, R. (2014). Proximal Remote Sensing Buggies and Potential Applications for Field-Based Phenotyping. Agronomy, 4(3), 349-379. doi:10.3390/agronomy4030349

Degu, A., Hochberg, U., Sikron, N., Venturini, L., Buson, G., Ghan, R., … Fait, A. (2014). Metabolite and transcript profiling of berry skin during fruit development elucidates differential regulation between Cabernet Sauvignon and Shiraz cultivars at branching points in the polyphenol pathway. BMC Plant Biology, 14(1). doi:10.1186/s12870-014-0188-4

Deluc, L., Barrieu, F., Marchive, C., Lauvergeat, V., Decendit, A., Richard, T., … Hamdi, S. (2005). Characterization of a Grapevine R2R3-MYB Transcription Factor That Regulates the Phenylpropanoid Pathway. Plant Physiology, 140(2), 499-511. doi:10.1104/pp.105.067231

Deluc, L., Bogs, J., Walker, A. R., Ferrier, T., Decendit, A., Merillon, J.-M., … Barrieu, F. (2008). The Transcription Factor VvMYB5b Contributes to the Regulation of Anthocyanin and Proanthocyanidin Biosynthesis in Developing Grape Berries. Plant Physiology, 147(4), 2041-2053. doi:10.1104/pp.108.118919

Deytieux, C., Geny, L., Lapaillerie, D., Claverol, S., Bonneu, M., & Doneche, B. (2007). Proteome analysis of grape skins during ripening. Journal of Experimental Botany, 58(7), 1851-1862. doi:10.1093/jxb/erm049

Dharmapuri, S., Rosati, C., Pallara, P., Aquilani, R., Bouvier, F., Camara, B., & Giuliano, G. (2002). Metabolic engineering of xanthophyll content in tomato fruits. FEBS Letters, 519(1-3), 30-34. doi:10.1016/s0014-5793(02)02699-6

Diaz de la Garza, R. I., Gregory, J. F., & Hanson, A. D. (2007). Folate biofortification of tomato fruit. Proceedings of the National Academy of Sciences, 104(10), 4218-4222. doi:10.1073/pnas.0700409104

Doligez, A., Bertrand, Y., Farnos, M., Grolier, M., Romieu, C., Esnault, F., … This, P. (2013). New stable QTLs for berry weight do not colocalize with QTLs for seed traits in cultivated grapevine (Vitis vinifera L.). BMC Plant Biology, 13(1), 217. doi:10.1186/1471-2229-13-217

Doucleff, M., Jin, Y., Gao, F., Riaz, S., Krivanek, A. F., & Walker, M. A. (2004). A genetic linkage map of grape, utilizing Vitis rupestris and Vitis arizonica. Theoretical and Applied Genetics, 109(6), 1178-1187. doi:10.1007/s00122-004-1728-3

Dresbøll, D. B., Thorup-Kristensen, K., McKenzie, B. M., Dupuy, L. X., & Bengough, A. G. (2013). Timelapse scanning reveals spatial variation in tomato (Solanum lycopersicum L.) root elongation rates during partial waterlogging. Plant and Soil, 369(1-2), 467-477. doi:10.1007/s11104-013-1592-5

Duchêne, E., Butterlin, G., Dumas, V., & Merdinoglu, D. (2011). Towards the adaptation of grapevine varieties to climate change: QTLs and candidate genes for developmental stages. Theoretical and Applied Genetics, 124(4), 623-635. doi:10.1007/s00122-011-1734-1

Eitel, J. U. H., Vierling, L. A., Long, D. S., & Hunt, E. R. (2011). Early season remote sensing of wheat nitrogen status using a green scanning laser. Agricultural and Forest Meteorology, 151(10), 1338-1345. doi:10.1016/j.agrformet.2011.05.015

Elizondo, R., & Oyanedel, E. (2010). Field Testing of Tomato Chilling Tolerance under Varying Light and Temperature Conditions. Chilean journal of agricultural research, 70(4), 552-558. doi:10.4067/s0718-58392010000400004

Etalo, D. W., Stulemeijer, I. J. E., Peter van Esse, H., de Vos, R. C. H., Bouwmeester, H. J., & Joosten, M. H. A. J. (2013). System-Wide Hypersensitive Response-Associated Transcriptome and Metabolome Reprogramming in Tomato. PLANT PHYSIOLOGY, 162(3), 1599-1617. doi:10.1104/pp.113.217471

Fahlgren, N., Gehan, M. A., & Baxter, I. (2015). Lights, camera, action: high-throughput plant phenotyping is ready for a close-up. Current Opinion in Plant Biology, 24, 93-99. doi:10.1016/j.pbi.2015.02.006

Fantini, E., Falcone, G., Frusciante, S., Giliberto, L., & Giuliano, G. (2013). Dissection of Tomato Lycopene Biosynthesis through Virus-Induced Gene Silencing. PLANT PHYSIOLOGY, 163(2), 986-998. doi:10.1104/pp.113.224733

Feechan, A., Anderson, C., Torregrosa, L., Jermakow, A., Mestre, P., Wiedemann-Merdinoglu, S., … Dry, I. B. (2013). Genetic dissection of a TIR-NB-LRR locus from the wild North American grapevine speciesMuscadinia rotundifoliaidentifies paralogous genes conferring resistance to major fungal and oomycete pathogens in cultivated grapevine. The Plant Journal, 76(4), 661-674. doi:10.1111/tpj.12327

Fernie, A. R., Tadmor, Y., & Zamir, D. (2006). Natural genetic variation for improving crop quality. Current Opinion in Plant Biology, 9(2), 196-202. doi:10.1016/j.pbi.2006.01.010

Fiorani, F., & Schurr, U. (2013). Future Scenarios for Plant Phenotyping. Annual Review of Plant Biology, 64(1), 267-291. doi:10.1146/annurev-arplant-050312-120137

Fiorani, F., Rascher, U., Jahnke, S., & Schurr, U. (2012). Imaging plants dynamics in heterogenic environments. Current Opinion in Biotechnology, 23(2), 227-235. doi:10.1016/j.copbio.2011.12.010

Fischer, B. M., Salakhutdinov, I., Akkurt, M., Eibach, R., Edwards, K. J., Töpfer, R., & Zyprian, E. M. (2003). Quantitative trait locus analysis of fungal disease resistance factors on a molecular map of grapevine. Theoretical and Applied Genetics, 108(3), 501-515. doi:10.1007/s00122-003-1445-3

Fodor, A., Segura, V., Denis, M., Neuenschwander, S., Fournier-Level, A., Chatelet, P., … Le Cunff, L. (2014). Genome-Wide Prediction Methods in Highly Diverse and Heterozygous Species: Proof-of-Concept through Simulation in Grapevine. PLoS ONE, 9(11), e110436. doi:10.1371/journal.pone.0110436

Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., … Zaks, D. P. M. (2011). Solutions for a cultivated planet. Nature, 478(7369), 337-342. doi:10.1038/nature10452

Fortes, A. M., Agudelo-Romero, P., Silva, M. S., Ali, K., Sousa, L., Maltese, F., … Pais, M. S. (2011). Transcript and metabolite analysis in Trincadeira cultivar reveals novel information regarding the dynamics of grape ripening. BMC Plant Biology, 11(1), 149. doi:10.1186/1471-2229-11-149

Fortes, A. M., & Gallusci, P. (2017). Plant Stress Responses and Phenotypic Plasticity in the Epigenomics Era: Perspectives on the Grapevine Scenario, a Model for Perennial Crop Plants. Frontiers in Plant Science, 08. doi:10.3389/fpls.2017.00082

Fortes, A., Teixeira, R., & Agudelo-Romero, P. (2015). Complex Interplay of Hormonal Signals during Grape Berry Ripening. Molecules, 20(5), 9326-9343. doi:10.3390/molecules20059326

Fowler, C. (2008). The Svalbard Seed Vault and Crop Security. BioScience, 58(3), 190-191. doi:10.1641/b580302

Francis, C., Lieblein, G., Gliessman, S., Breland, T. A., Creamer, N., Harwood, R., … Poincelot, R. (2003). Agroecology: The Ecology of Food Systems. Journal of Sustainable Agriculture, 22(3), 99-118. doi:10.1300/j064v22n03_10

Francisco, R. M., Regalado, A., Ageorges, A., Burla, B. J., Bassin, B., Eisenach, C., … Nagy, R. (2013). ABCC1, an ATP Binding Cassette Protein from Grape Berry, Transports Anthocyanidin 3-O-Glucosides. The Plant Cell, 25(5), 1840-1854. doi:10.1105/tpc.112.102152

Fraser, P. D., Enfissi, E. M. A., Halket, J. M., Truesdale, M. R., Yu, D., Gerrish, C., & Bramley, P. M. (2007). Manipulation of Phytoene Levels in Tomato Fruit: Effects on Isoprenoids, Plastids, and Intermediary Metabolism. The Plant Cell, 19(10), 3194-3211. doi:10.1105/tpc.106.049817

Fraser, P. D., Romer, S., Shipton, C. A., Mills, P. B., Kiano, J. W., Misawa, N., … Bramley, P. M. (2002). Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit-specific manner. Proceedings of the National Academy of Sciences, 99(2), 1092-1097. doi:10.1073/pnas.241374598

Fray, R. G., & Grierson, D. (1993). Identification and genetic analysis of normal and mutant phytoene synthase genes of tomato by sequencing, complementation and co-suppression. Plant Molecular Biology, 22(4), 589-602. doi:10.1007/bf00047400

Fridman, E., Pleban, T., & Zamir, D. (2000). A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proceedings of the National Academy of Sciences, 97(9), 4718-4723. doi:10.1073/pnas.97.9.4718

Fuentes, S., De Bei, R., Pech, J., & Tyerman, S. (2012). Computational water stress indices obtained from thermal image analysis of grapevine canopies. Irrigation Science, 30(6), 523-536. doi:10.1007/s00271-012-0375-8

Fulton, T. M., Beck-Bunn, T., Emmatty, D., Eshed, Y., Lopez, J., Petiard, V., … Tanksley, S. D. (1997). QTL analysis of an advanced backcross of Lycopersicon peruvianum to the cultivated tomato and comparisons with QTLs found in other wild species. Theoretical and Applied Genetics, 95(5-6), 881-894. doi:10.1007/s001220050639

Galpaz, N., Ronen, G., Khalfa, Z., Zamir, D., & Hirschberg, J. (2006). A Chromoplast-Specific Carotenoid Biosynthesis Pathway Is Revealed by Cloning of the Tomato white-flower Locus. The Plant Cell, 18(8), 1947-1960. doi:10.1105/tpc.105.039966

Galpaz, N., Wang, Q., Menda, N., Zamir, D., & Hirschberg, J. (2008). Abscisic acid deficiency in the tomato mutant high-pigment 3 leading to increased plastid number and higher fruit lycopene content. The Plant Journal, 53(5), 717-730. doi:10.1111/j.1365-313x.2007.03362.x

George, I. S., Pascovici, D., Mirzaei, M., & Haynes, P. A. (2015). Quantitative proteomic analysis of cabernet sauvignon grape cells exposed to thermal stresses reveals alterations in sugar and phenylpropanoid metabolism. PROTEOMICS, 15(17), 3048-3060. doi:10.1002/pmic.201400541

Gepts, P. (2014). The contribution of genetic and genomic approaches to plant domestication studies. Current Opinion in Plant Biology, 18, 51-59. doi:10.1016/j.pbi.2014.02.001

Ronen, G., Cohen, M., Zamir, D., & Hirschberg, J. (1999). Regulation of carotenoid biosynthesis during tomato fruit development: expression of the gene for lycopene epsilon-cyclase is down-regulated during ripening and is elevated in the mutantDelta. The Plant Journal, 17(4), 341-351. doi:10.1046/j.1365-313x.1999.00381.x

Giorio, G., Yildirim, A., Stigliani, A. L., & D’Ambrosio, C. (2013). Elevation of lutein content in tomato: A biochemical tug-of-war between lycopene cyclases. Metabolic Engineering, 20, 167-176. doi:10.1016/j.ymben.2013.10.007

Giovanelli, G., Sinelli, N., Beghi, R., Guidetti, R., & Casiraghi, E. (2014). NIR spectroscopy for the optimization of postharvest apple management. Postharvest Biology and Technology, 87, 13-20. doi:10.1016/j.postharvbio.2013.07.041

Giovinazzo, G., D’Amico, L., Paradiso, A., Bollini, R., Sparvoli, F., & DeGara, L. (2004). Antioxidant metabolite profiles in tomato fruit constitutively expressing the grapevine stilbene synthase gene. Plant Biotechnology Journal, 3(1), 57-69. doi:10.1111/j.1467-7652.2004.00099.x

Goldsbrough, A., Belzile, F., & Yoder, J. I. (1994). Complementation of the Tomato anthocyanin without (aw) Mutant Using the Dihydroflavonol 4-Reductase Gene. Plant Physiology, 105(2), 491-496. doi:10.1104/pp.105.2.491

Gomez, C., Terrier, N., Torregrosa, L., Vialet, S., Fournier-Level, A., Verriès, C., … Ageorges, A. (2009). Grapevine MATE-Type Proteins Act as Vacuolar H+-Dependent Acylated Anthocyanin Transporters. Plant Physiology, 150(1), 402-415. doi:10.1104/pp.109.135624

González-Barreiro, C., Rial-Otero, R., Cancho-Grande, B., & Simal-Gándara, J. (2014). Wine Aroma Compounds in Grapes: A Critical Review. Critical Reviews in Food Science and Nutrition, 55(2), 202-218. doi:10.1080/10408398.2011.650336

Goulet, C., Kamiyoshihara, Y., Lam, N. B., Richard, T., Taylor, M. G., Tieman, D. M., & Klee, H. J. (2015). Divergence in the Enzymatic Activities of a Tomato and Solanum pennellii Alcohol Acyltransferase Impacts Fruit Volatile Ester Composition. Molecular Plant, 8(1), 153-162. doi:10.1016/j.molp.2014.11.007

Grandillo, S., Termolino, P., & van der Knaap, E. (2013). Molecular Mapping of Complex Traits in Tomato. Genetics, Genomics, and Breeding of Tomato, 150-227. doi:10.1201/b14578-7

Ma, H., Chen, S., Yang, J., Chen, S., & Liu, H. (2010). Genetic linkage maps of barfin flounder (Verasper moseri) and spotted halibut (Verasper variegatus) based on AFLP and microsatellite markers. Molecular Biology Reports, 38(7), 4749-4764. doi:10.1007/s11033-010-0612-2

Grissa, I., Vergnaud, G., & Pourcel, C. (2007). The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics, 8(1), 172. doi:10.1186/1471-2105-8-172

Guillemaud, T., Lombaert, E., & Bourguet, D. (2016). Conflicts of Interest in GM Bt Crop Efficacy and Durability Studies. PLOS ONE, 11(12), e0167777. doi:10.1371/journal.pone.0167777

Gur, A., & Zamir, D. (2004). Unused Natural Variation Can Lift Yield Barriers in Plant Breeding. PLoS Biology, 2(10), e245. doi:10.1371/journal.pbio.0020245

Handa, A. K., Raheel, A., & Mattoo, A. K. (s. f.). Biotechnology of fruit quality. Fruit ripening: physiology, signalling and genomics, 259-290. doi:10.1079/9781845939625.0259

Harrigan, G. G., Martino-Catt, S., & Glenn, K. C. (2007). Metabolomics, metabolic diversity and genetic variation in crops. Metabolomics, 3(3), 259-272. doi:10.1007/s11306-007-0076-0

Harrison, E., Burbidge, A., Okyere, J. P., Thompson, A. J., & Taylor, I. B. (2010). Identification of the tomato ABA-deficient mutant sitiens as a member of the ABA-aldehyde oxidase gene family using genetic and genomic analysis. Plant Growth Regulation, 64(3), 301-309. doi:10.1007/s10725-010-9550-1

Herzog, K., Wind, R., & Töpfer, R. (2015). Impedance of the Grape Berry Cuticle as a Novel Phenotypic Trait to Estimate Resistance to Botrytis Cinerea. Sensors, 15(6), 12498-12512. doi:10.3390/s150612498

Hilioti, Z., Ganopoulos, I., Ajith, S., Bossis, I., & Tsaftaris, A. (2016). A novel arrangement of zinc finger nuclease system for in vivo targeted genome engineering: the tomato LEC1-LIKE4 gene case. Plant Cell Reports, 35(11), 2241-2255. doi:10.1007/s00299-016-2031-x

Höll, J., Vannozzi, A., Czemmel, S., D’Onofrio, C., Walker, A. R., Rausch, T., … Bogs, J. (2013). The R2R3-MYB Transcription Factors MYB14 and MYB15 Regulate Stilbene Biosynthesis in Vitis vinifera. The Plant Cell, 25(10), 4135-4149. doi:10.1105/tpc.113.117127

Honnay, O., Jacquemyn, H., & Aerts, R. (2012). Crop wild relatives: more common ground for breeders and ecologists. Frontiers in Ecology and the Environment, 10(3), 121-121. doi:10.1890/12.wb.007

Hosoi, F., & Omasa, K. (2012). Estimation of vertical plant area density profiles in a rice canopy at different growth stages by high-resolution portable scanning lidar with a lightweight mirror. ISPRS Journal of Photogrammetry and Remote Sensing, 74, 11-19. doi:10.1016/j.isprsjprs.2012.08.001

Hosoi, F., Nakabayashi, K., & Omasa, K. (2011). 3-D Modeling of Tomato Canopies Using a High-Resolution Portable Scanning Lidar for Extracting Structural Information. Sensors, 11(2), 2166-2174. doi:10.3390/s110202166

Houel, C., Chatbanyong, R., Doligez, A., Rienth, M., Foria, S., Luchaire, N., … Torregrosa, L. (2015). Identification of stable QTLs for vegetative and reproductive traits in the microvine (Vitis vinifera L.) using the 18 K Infinium chip. BMC Plant Biology, 15(1). doi:10.1186/s12870-015-0588-0

Huang, J.-C., Zhong, Y.-J., Liu, J., Sandmann, G., & Chen, F. (2013). Metabolic engineering of tomato for high-yield production of astaxanthin. Metabolic Engineering, 17, 59-67. doi:10.1016/j.ymben.2013.02.005

Huang, Z., & van der Knaap, E. (2011). Tomato fruit weight 11.3 maps close to fasciated on the bottom of chromosome 11. Theoretical and Applied Genetics, 123(3), 465-474. doi:10.1007/s00122-011-1599-3

Iijima, Y., Nakamura, Y., Ogata, Y., Tanaka, K., Sakurai, N., Suda, K., … Shibata, D. (2008). Metabolite annotations based on the integration of mass spectral information. The Plant Journal, 54(5), 949-962. doi:10.1111/j.1365-313x.2008.03434.x

Illa-Berenguer, E., Van Houten, J., Huang, Z., & van der Knaap, E. (2015). Rapid and reliable identification of tomato fruit weight and locule number loci by QTL-seq. Theoretical and Applied Genetics, 128(7), 1329-1342. doi:10.1007/s00122-015-2509-x

Ishimwe, R., Abutaleb, K., & Ahmed, F. (2014). Applications of Thermal Imaging in Agriculture—A Review. Advances in Remote Sensing, 03(03), 128-140. doi:10.4236/ars.2014.33011

Ito, Y., Nishizawa-Yokoi, A., Endo, M., Mikami, M., & Toki, S. (2015). CRISPR/Cas9-mediated mutagenesis of the RIN locus that regulates tomato fruit ripening. Biochemical and Biophysical Research Communications, 467(1), 76-82. doi:10.1016/j.bbrc.2015.09.117

Jacobs, T. B., & Martin, G. B. (2016). High-throughput CRISPR Vector Construction and Characterization of DNA Modifications by Generation of Tomato Hairy Roots. Journal of Visualized Experiments, (110). doi:10.3791/53843

(2007). The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature, 449(7161), 463-467. doi:10.1038/nature06148

Jia, H., & Wang, N. (2014). Targeted Genome Editing of Sweet Orange Using Cas9/sgRNA. PLoS ONE, 9(4), e93806. doi:10.1371/journal.pone.0093806

Jiménez-Gómez, J. M., Alonso-Blanco, C., Borja, A., Anastasio, G., Angosto, T., Lozano, R., & Martínez-Zapater, J. M. (2007). Quantitative genetic analysis of flowering time in tomato. Genome, 50(3), 303-315. doi:10.1139/g07-009

Jin, W., & Wu, F. (2016). Proteome-Wide Identification of Lysine Succinylation in the Proteins of Tomato (Solanum lycopersicum). PLOS ONE, 11(2), e0147586. doi:10.1371/journal.pone.0147586

Ali, K., Maltese, F., Zyprian, E., Rex, M., Choi, Y. H., & Verpoorte, R. (2009). NMR Metabolic Fingerprinting Based Identification of Grapevine Metabolites Associated with Downy Mildew Resistance. Journal of Agricultural and Food Chemistry, 57(20), 9599-9606. doi:10.1021/jf902069f

Khan, N., Kazmi, R. H., Willems, L. A. J., van Heusden, A. W., Ligterink, W., & Hilhorst, H. W. M. (2012). Exploring the Natural Variation for Seedling Traits and Their Link with Seed Dimensions in Tomato. PLoS ONE, 7(8), e43991. doi:10.1371/journal.pone.0043991

Klap, C., Yeshayahou, E., Bolger, A. M., Arazi, T., Gupta, S. K., Shabtai, S., … Barg, R. (2016). Tomato facultative parthenocarpy results from SlAGAMOUS-LIKE 6loss of function. Plant Biotechnology Journal, 15(5), 634-647. doi:10.1111/pbi.12662

Klee, H. J. (2010). Improving the flavor of fresh fruits: genomics, biochemistry, and biotechnology. New Phytologist, 187(1), 44-56. doi:10.1111/j.1469-8137.2010.03281.x

Klee, H. J., & Tieman, D. M. (2013). Genetic challenges of flavor improvement in tomato. Trends in Genetics, 29(4), 257-262. doi:10.1016/j.tig.2012.12.003

S., K., M., I., K., H., & C., H. (2002). Myb -related genes of the Kyoho grape ( Vitis labruscana ) regulate anthocyanin biosynthesis. Planta, 215(6), 924-933. doi:10.1007/s00425-002-0830-5

Kohlen, W., Charnikhova, T., Lammers, M., Pollina, T., Tóth, P., Haider, I., … López‐Ráez, J. A. (2012). The tomato CAROTENOID CLEAVAGE DIOXYGENASE 8 ( S l CCD 8 ) regulates rhizosphere signaling, plant architecture and affects reproductive development through strigolactone biosynthesis. New Phytologist, 196(2), 535-547. doi:10.1111/j.1469-8137.2012.04265.x

Krajewski, P., Chen, D., Ćwiek, H., van Dijk, A. D. J., Fiorani, F., Kersey, P., … Weise, S. (2015). Towards recommendations for metadata and data handling in plant phenotyping. Journal of Experimental Botany, 66(18), 5417-5427. doi:10.1093/jxb/erv271

Krivanek, A. F., Riaz, S., & Walker, M. A. (2006). Identification and molecular mapping of PdR1, a primary resistance gene to Pierce’s disease in Vitis. Theoretical and Applied Genetics, 112(6), 1125-1131. doi:10.1007/s00122-006-0214-5

Kuijken, R. C. P., van Eeuwijk, F. A., Marcelis, L. F. M., & Bouwmeester, H. J. (2015). Root phenotyping: from component trait in the lab to breeding: Table 1. Journal of Experimental Botany, 66(18), 5389-5401. doi:10.1093/jxb/erv239

Kumar, R., & Khurana, A. (2014). Functional genomics of tomato: Opportunities and challenges in post-genome NGS era. Journal of Biosciences, 39(5), 917-929. doi:10.1007/s12038-014-9480-6

Kurowska, M., Daszkowska-Golec, A., Gruszka, D., Marzec, M., Szurman, M., Szarejko, I., & Maluszynski, M. (2011). TILLING - a shortcut in functional genomics. Journal of Applied Genetics, 52(4), 371-390. doi:10.1007/s13353-011-0061-1

Laucou, V., Lacombe, T., Dechesne, F., Siret, R., Bruno, J.-P., Dessup, M., … This, P. (2011). High throughput analysis of grape genetic diversity as a tool for germplasm collection management. Theoretical and Applied Genetics, 122(6), 1233-1245. doi:10.1007/s00122-010-1527-y

LEGLAND, D., DEVAUX, M.-F., BOUCHET, B., GUILLON, F., & LAHAYE, M. (2012). Cartography of cell morphology in tomato pericarp at the fruit scale. Journal of Microscopy, 247(1), 78-93. doi:10.1111/j.1365-2818.2012.03623.x

Leida, C., Moser, C., Esteras, C., Sulpice, R., Lunn, J. E., de Langen, F., … Picó, B. (2015). Variability of candidate genes, genetic structure and association with sugar accumulation and climacteric behavior in a broad germplasm collection of melon (Cucumis melo L.). BMC Genetics, 16(1). doi:10.1186/s12863-015-0183-2

Li, Z., & Sillanpää, M. J. (2015). Dynamic Quantitative Trait Locus Analysis of Plant Phenomic Data. Trends in Plant Science, 20(12), 822-833. doi:10.1016/j.tplants.2015.08.012

Lim, W., Miller, R., Park, J., & Park, S. (2014). Consumer Sensory Analysis of High Flavonoid Transgenic Tomatoes. Journal of Food Science, 79(6), S1212-S1217. doi:10.1111/1750-3841.12478

Lin, T., Zhu, G., Zhang, J., Xu, X., Yu, Q., Zheng, Z., … Huang, S. (2014). Genomic analyses provide insights into the history of tomato breeding. Nature Genetics, 46(11), 1220-1226. doi:10.1038/ng.3117

Liu, R., How-Kit, A., Stammitti, L., Teyssier, E., Rolin, D., Mortain-Bertrand, A., … Gallusci, P. (2015). A DEMETER-like DNA demethylase governs tomato fruit ripening. Proceedings of the National Academy of Sciences, 112(34), 10804-10809. doi:10.1073/pnas.1503362112

Liu, Y.-S., Gur, A., Ronen, G., Causse, M., Damidaux, R., Buret, M., … Zamir, D. (2003). There is more to tomato fruit colour than candidate carotenoid genes. Plant Biotechnology Journal, 1(3), 195-207. doi:10.1046/j.1467-7652.2003.00018.x

Llorens, J., Gil, E., Llop, J., & Escolà, A. (2011). Ultrasonic and LIDAR Sensors for Electronic Canopy Characterization in Vineyards: Advances to Improve Pesticide Application Methods. Sensors, 11(2), 2177-2194. doi:10.3390/s110202177

Long, M., Millar, D. J., Kimura, Y., Donovan, G., Rees, J., Fraser, P. D., … Bolwell, G. P. (2006). Metabolite profiling of carotenoid and phenolic pathways in mutant and transgenic lines of tomato: Identification of a high antioxidant fruit line. Phytochemistry, 67(16), 1750-1757. doi:10.1016/j.phytochem.2006.02.022

Lor, V. S., Starker, C. G., Voytas, D. F., Weiss, D., & Olszewski, N. E. (2014). Targeted Mutagenesis of the Tomato PROCERA Gene Using Transcription Activator-Like Effector Nucleases. PLANT PHYSIOLOGY, 166(3), 1288-1291. doi:10.1104/pp.114.247593

Lucatti, A. F., van Heusden, A. W., de Vos, R. C., Visser, R. G., & Vosman, B. (2013). Differences in insect resistance between tomato species endemic to the Galapagos Islands. BMC Evolutionary Biology, 13(1), 175. doi:10.1186/1471-2148-13-175

Mageroy, M. H., Tieman, D. M., Floystad, A., Taylor, M. G., & Klee, H. J. (2011). A Solanum lycopersicum catechol-O-methyltransferase involved in synthesis of the flavor molecule guaiacol. The Plant Journal, 69(6), 1043-1051. doi:10.1111/j.1365-313x.2011.04854.x

Malacarne, G., Coller, E., Czemmel, S., Vrhovsek, U., Engelen, K., Goremykin, V., … Moser, C. (2016). The grapevine VvibZIPC22 transcription factor is involved in the regulation of flavonoid biosynthesis. Journal of Experimental Botany, 67(11), 3509-3522. doi:10.1093/jxb/erw181

Malacarne, G., Costantini, L., Coller, E., Battilana, J., Velasco, R., Vrhovsek, U., … Moser, C. (2015). Regulation of flavonol content and composition in (Syrah×Pinot Noir) mature grapes: integration of transcriptional profiling and metabolic quantitative trait locus analyses. Journal of Experimental Botany, 66(15), 4441-4453. doi:10.1093/jxb/erv243

Marguerit, E., Boury, C., Manicki, A., Donnart, M., Butterlin, G., Némorin, A., … Decroocq, S. (2009). Genetic dissection of sex determinism, inflorescence morphology and downy mildew resistance in grapevine. Theoretical and Applied Genetics, 118(7), 1261-1278. doi:10.1007/s00122-009-0979-4

Martin, D. M., Chiang, A., Lund, S. T., & Bohlmann, J. (2012). Biosynthesis of wine aroma: transcript profiles of hydroxymethylbutenyl diphosphate reductase, geranyl diphosphate synthase, and linalool/nerolidol synthase parallel monoterpenol glycoside accumulation in Gewürztraminer grapes. Planta, 236(3), 919-929. doi:10.1007/s00425-012-1704-0

Mathieu, S., Cin, V. D., Fei, Z., Li, H., Bliss, P., Taylor, M. G., … Tieman, D. M. (2008). Flavour compounds in tomato fruits: identification of loci and potential pathways affecting volatile composition. Journal of Experimental Botany, 60(1), 325-337. doi:10.1093/jxb/ern294

Matsui, K., Ishii, M., Sasaki, M., Rabinowitch, H. D., & Ben-Oliel, G. (2007). Identification of an Allele Attributable to Formation of Cucumber-like Flavor in Wild Tomato Species (Solanum pennellii) That Was Inactivated during Domestication. Journal of Agricultural and Food Chemistry, 55(10), 4080-4086. doi:10.1021/jf063756b

Maxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence—a practical guide. Journal of Experimental Botany, 51(345), 659-668. doi:10.1093/jexbot/51.345.659

Mazzucato, A., Papa, R., Bitocchi, E., Mosconi, P., Nanni, L., Negri, V., … Veronesi, F. (2008). Genetic diversity, structure and marker-trait associations in a collection of Italian tomato (Solanum lycopersicum L.) landraces. Theoretical and Applied Genetics, 116(5), 657-669. doi:10.1007/s00122-007-0699-6

Mba, C. (2013). Induced Mutations Unleash the Potentials of Plant Genetic Resources for Food and Agriculture. Agronomy, 3(1), 200-231. doi:10.3390/agronomy3010200

McMullen, M. D., Kresovich, S., Villeda, H. S., Bradbury, P., Li, H., Sun, Q., … Buckler, E. S. (2009). Genetic Properties of the Maize Nested Association Mapping Population. Science, 325(5941), 737-740. doi:10.1126/science.1174320

Menda, N., Semel, Y., Peled, D., Eshed, Y., & Zamir, D. (2004). In silicoscreening of a saturated mutation library of tomato. The Plant Journal, 38(5), 861-872. doi:10.1111/j.1365-313x.2004.02088.x

MENZEL, M. I., TITTMANN, S., BÜHLER, J., PREIS, S., WOLTERS, N., JAHNKE, S., … KRAUSE, H.-J. (2009). Non-invasive determination of plant biomass with microwave resonators. Plant, Cell & Environment, 32(4), 368-379. doi:10.1111/j.1365-3040.2009.01931.x

Meron, M., Sprintsin, M., Tsipris, J., Alchanatis, V., & Cohen, Y. (2013). Foliage temperature extraction from thermal imagery for crop water stress determination. Precision Agriculture, 14(5), 467-477. doi:10.1007/s11119-013-9310-0

Mes, P. J., Boches, P., Myers, J. R., & Durst, R. (2008). Characterization of Tomatoes Expressing Anthocyanin in the Fruit. Journal of the American Society for Horticultural Science, 133(2), 262-269. doi:10.21273/jashs.133.2.262

Minoia, S., Petrozza, A., D’Onofrio, O., Piron, F., Mosca, G., Sozio, G., … Carriero, F. (2010). A new mutant genetic resource for tomato crop improvement by TILLING technology. BMC Research Notes, 3(1). doi:10.1186/1756-0500-3-69

Mishra, K. B., Iannacone, R., Petrozza, A., Mishra, A., Armentano, N., La Vecchia, G., … Nedbal, L. (2012). Engineered drought tolerance in tomato plants is reflected in chlorophyll fluorescence emission. Plant Science, 182, 79-86. doi:10.1016/j.plantsci.2011.03.022

Monforte, A. J., & Tanksley, S. D. (2000). Development of a set of near isogenic and backcross recombinant inbred lines containing most of the Lycopersicon hirsutum genome in a L. esculentum genetic background: A tool for gene mapping and gene discovery. Genome, 43(5), 803-813. doi:10.1139/gen-43-5-803

Monforte, A. J., Diaz, A., Caño-Delgado, A., & van der Knaap, E. (2013). The genetic basis of fruit morphology in horticultural crops: lessons from tomato and melon. Journal of Experimental Botany, 65(16), 4625-4637. doi:10.1093/jxb/eru017

Monforte, A. J., Friedman, E., Zamir, D., & Tanksley, S. D. (2001). Comparison of a set of allelic QTL-NILs for chromosome 4 of tomato: Deductions about natural variation and implications for germplasm utilization. Theoretical and Applied Genetics, 102(4), 572-590. doi:10.1007/s001220051684

Motion, G. B., Howden, A. J. M., Huitema, E., & Jones, S. (2015). DNA-binding protein prediction using plant specific support vector machines: validation and application of a new genome annotation tool. Nucleic Acids Research, 43(22), e158-e158. doi:10.1093/nar/gkv805

Mounet, F., Moing, A., Kowalczyk, M., Rohrmann, J., Petit, J., Garcia, V., … Lemaire-Chamley, M. (2012). Down-regulation of a single auxin efflux transport protein in tomato induces precocious fruit development. Journal of Experimental Botany, 63(13), 4901-4917. doi:10.1093/jxb/ers167

Nakano, H., Kobayashi, N., Takahata, K., Mine, Y., & Sugiyama, N. (2016). Quantitative trait loci analysis of the time of floral initiation in tomato. Scientia Horticulturae, 201, 199-210. doi:10.1016/j.scienta.2016.02.009

Neuman, H., Galpaz, N., Cunningham, F. X., Zamir, D., & Hirschberg, J. (2014). The tomato mutationnxd1reveals a gene necessary for neoxanthin biosynthesis and demonstrates that violaxanthin is a sufficient precursor for abscisic acid biosynthesis. The Plant Journal, 78(1), 80-93. doi:10.1111/tpj.12451

Nicolas, S. D., Péros, J.-P., Lacombe, T., Launay, A., Le Paslier, M.-C., Bérard, A., … Doligez, A. (2016). Genetic diversity, linkage disequilibrium and power of a large grapevine (Vitis vinifera L) diversity panel newly designed for association studies. BMC Plant Biology, 16(1). doi:10.1186/s12870-016-0754-z

Nishitani, C., Hirai, N., Komori, S., Wada, M., Okada, K., Osakabe, K., … Osakabe, Y. (2016). Efficient Genome Editing in Apple Using a CRISPR/Cas9 system. Scientific Reports, 6(1). doi:10.1038/srep31481

Nunes-Nesi, A., Carrari, F., Lytovchenko, A., Smith, A. M. O., Ehlers Loureiro, M., Ratcliffe, R. G., … Fernie, A. R. (2005). Enhanced Photosynthetic Performance and Growth as a Consequence of Decreasing Mitochondrial Malate Dehydrogenase Activity in Transgenic Tomato Plants. Plant Physiology, 137(2), 611-622. doi:10.1104/pp.104.055566

Orzaez, D., Monforte, A. J., & Granell, A. (2010). Using genetic variability available in the breeder’s pool to engineer fruit quality. GM Crops, 1(3), 120-127. doi:10.4161/gmcr.1.3.12327

Oyanedel, E., Wolfe, D. W., Monforte, A. J., Tanksley, S. D., & Owens, T. G. (2001). USING LYCOPERSICON HIRSUTUM AS A SOURCE OF COLD TOLERANCE IN PROCESSING TOMATO BREEDING. Acta Horticulturae, (542), 387-391. doi:10.17660/actahortic.2001.542.51

Pan, C., Ye, L., Qin, L., Liu, X., He, Y., Wang, J., … Lu, G. (2016). CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations. Scientific Reports, 6(1). doi:10.1038/srep24765

Pankratov, I., McQuinn, R., Schwartz, J., Bar, E., Fei, Z., Lewinsohn, E., … Hirschberg, J. (2016). Fruit carotenoid-deficient mutants in tomato reveal a function of the plastidial isopentenyl diphosphate isomerase (IDI1) in carotenoid biosynthesis. The Plant Journal, 88(1), 82-94. doi:10.1111/tpj.13232

Parker, J., Koh, J., Yoo, M.-J., Zhu, N., Feole, M., Yi, S., & Chen, S. (2013). Quantitative proteomics of tomato defense againstPseudomonas syringaeinfection. PROTEOMICS, 13(12-13), 1934-1946. doi:10.1002/pmic.201200402

Pascual, L., Albert, E., Sauvage, C., Duangjit, J., Bouchet, J.-P., Bitton, F., … Causse, M. (2016). Dissecting quantitative trait variation in the resequencing era: complementarity of bi-parental, multi-parental and association panels. Plant Science, 242, 120-130. doi:10.1016/j.plantsci.2015.06.017

Pascual, L., Desplat, N., Huang, B. E., Desgroux, A., Bruguier, L., Bouchet, J.-P., … Causse, M. (2014). Potential of a tomato MAGIC population to decipher the genetic control of quantitative traits and detect causal variants in the resequencing era. Plant Biotechnology Journal, 13(4), 565-577. doi:10.1111/pbi.12282

Pérez-Díaz, R., Madrid-Espinoza, J., Salinas-Cornejo, J., González-Villanueva, E., & Ruiz-Lara, S. (2016). Differential Roles for VviGST1, VviGST3, and VviGST4 in Proanthocyanidin and Anthocyanin Transport in Vitis vinífera. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.01166

Prada, D. (2009). Molecular population genetics and agronomic alleles in seed banks: searching for a needle in a haystack? Journal of Experimental Botany, 60(9), 2541-2552. doi:10.1093/jxb/erp130

Prashar, A., & Jones, H. (2014). Infra-Red Thermography as a High-Throughput Tool for Field Phenotyping. Agronomy, 4(3), 397-417. doi:10.3390/agronomy4030397

Quadrana, L., Almeida, J., Asís, R., Duffy, T., Dominguez, P. G., Bermúdez, L., … Carrari, F. (2014). Natural occurring epialleles determine vitamin E accumulation in tomato fruits. Nature Communications, 5(1). doi:10.1038/ncomms5027

Rambla, J. L., Trapero-Mozos, A., Diretto, G., Rubio-Moraga, A., Granell, A., Gómez-Gómez, L., & Ahrazem, O. (2016). Gene-Metabolite Networks of Volatile Metabolism in Airen and Tempranillo Grape Cultivars Revealed a Distinct Mechanism of Aroma Bouquet Production. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.01619

Rambla, J. L., Medina, A., Fernández-del-Carmen, A., Barrantes, W., Grandillo, S., Cammareri, M., … Granell, A. (2016). Identification, introgression, and validation of fruit volatile QTLs from a red-fruited wild tomato species. Journal of Experimental Botany, erw455. doi:10.1093/jxb/erw455

Raza, S.-A., Prince, G., Clarkson, J. P., & Rajpoot, N. M. (2015). Automatic Detection of Diseased Tomato Plants Using Thermal and Stereo Visible Light Images. PLOS ONE, 10(4), e0123262. doi:10.1371/journal.pone.0123262

Reganold, J. P., & Wachter, J. M. (2016). Organic agriculture in the twenty-first century. Nature Plants, 2(2). doi:10.1038/nplants.2015.221

Ren, C., Liu, X., Zhang, Z., Wang, Y., Duan, W., Li, S., & Liang, Z. (2016). CRISPR/Cas9-mediated efficient targeted mutagenesis in Chardonnay (Vitis vinifera L.). Scientific Reports, 6(1). doi:10.1038/srep32289

Riaz, S., Krivanek, A. F., Xu, K., & Walker, M. A. (2006). Refined mapping of the Pierce’s disease resistance locus, PdR1, and Sex on an extended genetic map of Vitis rupestris × V. arizonica. Theoretical and Applied Genetics, 113(7), 1317-1329. doi:10.1007/s00122-006-0385-0

Riaz, S., Tenscher, A. C., Ramming, D. W., & Walker, M. A. (2010). Using a limited mapping strategy to identify major QTLs for resistance to grapevine powdery mildew (Erysiphe necator) and their use in marker-assisted breeding. Theoretical and Applied Genetics, 122(6), 1059-1073. doi:10.1007/s00122-010-1511-6

Rinaldo, A., Cavallini, E., Jia, Y., Moss, S. M. A., McDavid, D. A. J., Hooper, L. C., … Walker, A. R. (2015). A grapevine anthocyanin acyltransferase, transcriptionally regulated by VvMYBA, can produce most acylated anthocyanins present in grape skins. Plant Physiology, pp.01255.2015. doi:10.1104/pp.15.01255

Roby, J.-P., Leeuwen, C. van, Gonçalves, E., Graça, A., & Martins, A. (2014). The preservation of genetic resources of the vine requires cohabitation between institutional clonal selection, mass selection and private clonal selection. BIO Web of Conferences, 3, 01018. doi:10.1051/bioconf/20140301018

Römer, S., Fraser, P. D., Kiano, J. W., Shipton, C. A., Misawa, N., Schuch, W., & Bramley, P. M. (2000). Elevation of the provitamin A content of transgenic tomato plants. Nature Biotechnology, 18(6), 666-669. doi:10.1038/76523

Ron, M., Kajala, K., Pauluzzi, G., Wang, D., Reynoso, M. A., Zumstein, K., … Brady, S. M. (2014). Hairy Root Transformation Using Agrobacterium rhizogenes as a Tool for Exploring Cell Type-Specific Gene Expression and Function Using Tomato as a Model. PLANT PHYSIOLOGY, 166(2), 455-469. doi:10.1104/pp.114.239392

Ronen, G., Carmel-Goren, L., Zamir, D., & Hirschberg, J. (2000). An alternative pathway to beta -carotene formation in plant chromoplasts discovered by map-based cloning of Beta and old-gold color mutations in tomato. Proceedings of the National Academy of Sciences, 97(20), 11102-11107. doi:10.1073/pnas.190177497

Rosati, C., Aquilani, R., Dharmapuri, S., Pallara, P., Marusic, C., Tavazza, R., … Giuliano, G. (2000). Metabolic engineering of beta-carotene and lycopene content in tomato fruit. The Plant Journal, 24(3), 413-420. doi:10.1046/j.1365-313x.2000.00880.x

Rosenberg, N. A., Huang, L., Jewett, E. M., Szpiech, Z. A., Jankovic, I., & Boehnke, M. (2010). Genome-wide association studies in diverse populations. Nature Reviews Genetics, 11(5), 356-366. doi:10.1038/nrg2760

Rousseau, D., Chéné, Y., Belin, E., Semaan, G., Trigui, G., Boudehri, K., … Chapeau-Blondeau, F. (2015). Multiscale imaging of plants: current approaches and challenges. Plant Methods, 11(1), 6. doi:10.1186/s13007-015-0050-1

Rousseaux, M. C., Jones, C. M., Adams, D., Chetelat, R., Bennett, A., & Powell, A. (2005). QTL analysis of fruit antioxidants in tomato using Lycopersicon pennellii introgression lines. Theoretical and Applied Genetics, 111(7), 1396-1408. doi:10.1007/s00122-005-0071-7

Ruggieri, V., Francese, G., Sacco, A., D’Alessandro, A., Rigano, M. M., Parisi, M., … Barone, A. (2014). An association mapping approach to identify favourable alleles for tomato fruit quality breeding. BMC Plant Biology, 14(1). doi:10.1186/s12870-014-0337-9

Sagi, M., Scazzocchio, C., & Fluhr, R. (2002). The absence of molybdenum cofactor sulfuration is the primary cause of the flacca phenotype in tomato plants. The Plant Journal, 31(3), 305-317. doi:10.1046/j.1365-313x.2002.01363.x

Saito, T., Ariizumi, T., Okabe, Y., Asamizu, E., Hiwasa-Tanase, K., Fukuda, N., … Ezura, H. (2011). TOMATOMA: A Novel Tomato Mutant Database Distributing Micro-Tom Mutant Collections. Plant and Cell Physiology, 52(2), 283-296. doi:10.1093/pcp/pcr004

Saliba-Colombani, V., Causse, M., Langlois, D., Philouze, J., & Buret, M. (2001). Genetic analysis of organoleptic quality in fresh market tomato. 1. Mapping QTLs for physical and chemical traits. Theoretical and Applied Genetics, 102(2-3), 259-272. doi:10.1007/s001220051643

Sankaran, S., Khot, L. R., Espinoza, C. Z., Jarolmasjed, S., Sathuvalli, V. R., Vandemark, G. J., … Pavek, M. J. (2015). Low-altitude, high-resolution aerial imaging systems for row and field crop phenotyping: A review. European Journal of Agronomy, 70, 112-123. doi:10.1016/j.eja.2015.07.004

Sanz, R., Rosell, J. R., Llorens, J., Gil, E., & Planas, S. (2013). Relationship between tree row LIDAR-volume and leaf area density for fruit orchards and vineyards obtained with a LIDAR 3D Dynamic Measurement System. Agricultural and Forest Meteorology, 171-172, 153-162. doi:10.1016/j.agrformet.2012.11.013

Sarrion-Perdigones, A., Falconi, E. E., Zandalinas, S. I., Juárez, P., Fernández-del-Carmen, A., Granell, A., & Orzaez, D. (2011). GoldenBraid: An Iterative Cloning System for Standardized Assembly of Reusable Genetic Modules. PLoS ONE, 6(7), e21622. doi:10.1371/journal.pone.0021622

Sarrion-Perdigones, A., Vazquez-Vilar, M., Palaci, J., Castelijns, B., Forment, J., Ziarsolo, P., … Orzaez, D. (2013). GoldenBraid 2.0: A Comprehensive DNA Assembly Framework for Plant Synthetic Biology. PLANT PHYSIOLOGY, 162(3), 1618-1631. doi:10.1104/pp.113.217661

(2012). The tomato genome sequence provides insights into fleshy fruit evolution. Nature, 485(7400), 635-641. doi:10.1038/nature11119

Schaart, J. G., van de Wiel, C. C. M., Lotz, L. A. P., & Smulders, M. J. M. (2016). Opportunities for Products of New Plant Breeding Techniques. Trends in Plant Science, 21(5), 438-449. doi:10.1016/j.tplants.2015.11.006

Schauer, N., Semel, Y., Balbo, I., Steinfath, M., Repsilber, D., Selbig, J., … Fernie, A. R. (2008). Mode of Inheritance of Primary Metabolic Traits in Tomato. The Plant Cell, 20(3), 509-523. doi:10.1105/tpc.107.056523

Schauer, N., Semel, Y., Roessner, U., Gur, A., Balbo, I., Carrari, F., … Fernie, A. R. (2006). Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nature Biotechnology, 24(4), 447-454. doi:10.1038/nbt1192

Schauer, N. (2004). Metabolic profiling of leaves and fruit of wild species tomato: a survey of the Solanum lycopersicum complex. Journal of Experimental Botany, 56(410), 297-307. doi:10.1093/jxb/eri057

Schijlen, E., Ric de Vos, C. H., Jonker, H., van den Broeck, H., Molthoff, J., van Tunen, A., … Bovy, A. (2006). Pathway engineering for healthy phytochemicals leading to the production of novel flavonoids in tomato fruit. Plant Biotechnology Journal, 4(4), 433-444. doi:10.1111/j.1467-7652.2006.00192.x

Schreiber, G., Reuveni, M., Evenor, D., Oren-Shamir, M., Ovadia, R., Sapir-Mir, M., … Levin, I. (2011). ANTHOCYANIN1 from Solanum chilense is more efficient in accumulating anthocyanin metabolites than its Solanum lycopersicum counterpart in association with the ANTHOCYANIN FRUIT phenotype of tomato. Theoretical and Applied Genetics, 124(2), 295-307. doi:10.1007/s00122-011-1705-6

Shah, P., Powell, A. L. T., Orlando, R., Bergmann, C., & Gutierrez-Sanchez, G. (2012). Proteomic Analysis of Ripening Tomato Fruit Infected byBotrytis cinerea. Journal of Proteome Research, 11(4), 2178-2192. doi:10.1021/pr200965c

Hsu, P. D., Scott, D. A., Weinstein, J. A., Ran, F. A., Konermann, S., Agarwala, V., … Zhang, F. (2013). DNA targeting specificity of RNA-guided Cas9 nucleases. Nature Biotechnology, 31(9), 827-832. doi:10.1038/nbt.2647

Shen, J., Tieman, D., Jones, J. B., Taylor, M. G., Schmelz, E., Huffaker, A., … Klee, H. J. (2014). A 13-lipoxygenase, TomloxC, is essential for synthesis of C5 flavour volatiles in tomato. Journal of Experimental Botany, 65(2), 419-428. doi:10.1093/jxb/ert382

Shikata, M., Hoshikawa, K., Ariizumi, T., Fukuda, N., Yamazaki, Y., & Ezura, H. (2015). TOMATOMA Update: Phenotypic and Metabolite Information in the Micro-Tom Mutant Resource. Plant and Cell Physiology, 57(1), e11-e11. doi:10.1093/pcp/pcv194

Sim, S.-C., Durstewitz, G., Plieske, J., Wieseke, R., Ganal, M. W., Van Deynze, A., … Francis, D. M. (2012). Development of a Large SNP Genotyping Array and Generation of High-Density Genetic Maps in Tomato. PLoS ONE, 7(7), e40563. doi:10.1371/journal.pone.0040563

Simkin, A. J., Schwartz, S. H., Auldridge, M., Taylor, M. G., & Klee, H. J. (2004). The tomato carotenoid cleavage dioxygenase 1 genes contribute to the formation of the flavor volatiles β-ionone, pseudoionone, and geranylacetone. The Plant Journal, 40(6), 882-892. doi:10.1111/j.1365-313x.2004.02263.x

Speirs, J., Lee, E., Holt, K., Yong-Duk, K., Steele Scott, N., Loveys, B., & Schuch, W. (1998). Genetic Manipulation of Alcohol Dehydrogenase Levels in Ripening Tomato Fruit Affects the Balance of Some Flavor Aldehydes and Alcohols. Plant Physiology, 117(3), 1047-1058. doi:10.1104/pp.117.3.1047

Sprink, T., Metje, J., & Hartung, F. (2015). Plant genome editing by novel tools: TALEN and other sequence specific nucleases. Current Opinion in Biotechnology, 32, 47-53. doi:10.1016/j.copbio.2014.11.010

Steiber, A., Hegazi, R., Herrera, M., Landy Zamor, M., Chimanya, K., Pekcan, A. G., … Ojwang, A. A. (2015). Spotlight on Global Malnutrition: A Continuing Challenge in the 21st Century. Journal of the Academy of Nutrition and Dietetics, 115(8), 1335-1341. doi:10.1016/j.jand.2015.05.015

Sun, Y. D., Liang, Y., Wu, J. M., Li, Y. Z., Cui, X., & Qin, L. (2012). Dynamic QTL analysis for fruit lycopene content and total soluble solid content in a Solanum lycopersicum x S. pimpinellifolium cross. Genetics and Molecular Research, 11(4), 3696-3710. doi:10.4238/2012.august.17.8

Tadmor, Y., Fridman, E., Gur, A., Larkov, O., Lastochkin, E., Ravid, U., … Lewinsohn, E. (2002). Identification ofmalodorous, a Wild Species Allele Affecting Tomato Aroma That Was Selected against during Domestication. Journal of Agricultural and Food Chemistry, 50(7), 2005-2009. doi:10.1021/jf011237x

Tang, H., Sezen, U., & Paterson, A. H. (2010). Domestication and plant genomes. Current Opinion in Plant Biology, 13(2), 160-166. doi:10.1016/j.pbi.2009.10.008

Tanksley, S. D., Grandillo, S., Fulton, T. M., Zamir, D., Eshed, Y., Petiard, V., … Beck-Bunn, T. (1996). Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pimpinellifolium. Theoretical and Applied Genetics, 92(2), 213-224. doi:10.1007/bf00223378

Tanou, G., Job, C., Rajjou, L., Arc, E., Belghazi, M., Diamantidis, G., … Job, D. (2009). Proteomics reveals the overlapping roles of hydrogen peroxide and nitric oxide in the acclimation of citrus plants to salinity. The Plant Journal, 60(5), 795-804. doi:10.1111/j.1365-313x.2009.04000.x

Temple, L., Kwa, M., Tetang, J., & Bikoi, A. (2011). Organizational determinant of technological innovation in food agriculture and impacts on sustainable development. Agronomy for Sustainable Development, 31(4), 745-755. doi:10.1007/s13593-011-0017-1

Thapa, S. P., Miyao, E. M., Michael Davis, R., & Coaker, G. (2015). Identification of QTLs controlling resistance to Pseudomonas syringae pv. tomato race 1 strains from the wild tomato, Solanum habrochaites LA1777. Theoretical and Applied Genetics, 128(4), 681-692. doi:10.1007/s00122-015-2463-7

THIS, P., LACOMBE, T., & THOMAS, M. (2006). Historical origins and genetic diversity of wine grapes. Trends in Genetics, 22(9), 511-519. doi:10.1016/j.tig.2006.07.008

Tieman, D. M., Zeigler, M., Schmelz, E. A., Taylor, M. G., Bliss, P., Kirst, M., & Klee, H. J. (2006). Identification of loci affecting flavour volatile emissions in tomato fruits. Journal of Experimental Botany, 57(4), 887-896. doi:10.1093/jxb/erj074

Tieman, D., Zeigler, M., Schmelz, E., Taylor, M. G., Rushing, S., Jones, J. B., & Klee, H. J. (2010). Functional analysis of a tomato salicylic acid methyl transferase and its role in synthesis of the flavor volatile methyl salicylate. The Plant Journal, 62(1), 113-123. doi:10.1111/j.1365-313x.2010.04128.x

Tikunov, Y. M., Molthoff, J., de Vos, R. C. H., Beekwilder, J., van Houwelingen, A., van der Hooft, J. J. J., … Bovy, A. G. (2013). NON-SMOKY GLYCOSYLTRANSFERASE1 Prevents the Release of Smoky Aroma from Tomato Fruit. The Plant Cell, 25(8), 3067-3078. doi:10.1105/tpc.113.114231

Tilman, D., & Clark, M. (2015). Food, Agriculture & the Environment: Can We Feed the World & Save the Earth? Daedalus, 144(4), 8-23. doi:10.1162/daed_a_00350

Truco, M. J., Randall, L. B., Bloom, A. J., & St. Clair, D. A. (2000). Detection of QTLs associated with shoot wilting and root ammonium uptake under chilling temperatures in an interspecific backcross population from Lycopersicon esculentum ×L. hirsutum. Theoretical and Applied Genetics, 101(7), 1082-1092. doi:10.1007/s001220051583

Uluisik, S., Chapman, N. H., Smith, R., Poole, M., Adams, G., Gillis, R. B., … Seymour, G. B. (2016). Genetic improvement of tomato by targeted control of fruit softening. Nature Biotechnology, 34(9), 950-952. doi:10.1038/nbt.3602

Vadivambal, R., & Jayas, D. S. (2010). Applications of Thermal Imaging in Agriculture and Food Industry—A Review. Food and Bioprocess Technology, 4(2), 186-199. doi:10.1007/s11947-010-0333-5

Van der Knaap, E., Lippman, Z. B., & Tanksley, S. D. (2002). Extremely elongated tomato fruit controlled by four quantitative trait loci with epistatic interactions. Theoretical and Applied Genetics, 104(2), 241-247. doi:10.1007/s00122-001-0776-1

Varshney, R. K., Terauchi, R., & McCouch, S. R. (2014). Harvesting the Promising Fruits of Genomics: Applying Genome Sequencing Technologies to Crop Breeding. PLoS Biology, 12(6), e1001883. doi:10.1371/journal.pbio.1001883

Vazquez-Vilar, M., Bernabé-Orts, J. M., Fernandez-del-Carmen, A., Ziarsolo, P., Blanca, J., Granell, A., & Orzaez, D. (2016). A modular toolbox for gRNA–Cas9 genome engineering in plants based on the GoldenBraid standard. Plant Methods, 12(1). doi:10.1186/s13007-016-0101-2

Velasco, R., Zharkikh, A., Troggio, M., Cartwright, D. A., Cestaro, A., Pruss, D., … Reid, J. (2007). A High Quality Draft Consensus Sequence of the Genome of a Heterozygous Grapevine Variety. PLoS ONE, 2(12), e1326. doi:10.1371/journal.pone.0001326

Víquez-Zamora, M., Caro, M., Finkers, R., Tikunov, Y., Bovy, A., Visser, R. G., … van Heusden, S. (2014). Mapping in the era of sequencing: high density genotyping and its application for mapping TYLCV resistance in Solanum pimpinellifolium. BMC Genomics, 15(1), 1152. doi:10.1186/1471-2164-15-1152

Vogel, J. T., Walter, M. H., Giavalisco, P., Lytovchenko, A., Kohlen, W., Charnikhova, T., … Klee, H. J. (2009). SlCCD7 controls strigolactone biosynthesis, shoot branching and mycorrhiza-induced apocarotenoid formation in tomato. The Plant Journal, 61(2), 300-311. doi:10.1111/j.1365-313x.2009.04056.x

Walker, A. R., Lee, E., Bogs, J., McDavid, D. A. J., Thomas, M. R., & Robinson, S. P. (2007). White grapes arose through the mutation of two similar and adjacent regulatory genes. The Plant Journal, 49(5), 772-785. doi:10.1111/j.1365-313x.2006.02997.x

Wang, Y., Liu, X., Ren, C., Zhong, G.-Y., Yang, L., Li, S., & Liang, Z. (2016). Identification of genomic sites for CRISPR/Cas9-based genome editing in the Vitis vinifera genome. BMC Plant Biology, 16(1). doi:10.1186/s12870-016-0787-3

Wasson, A. P., Richards, R. A., Chatrath, R., Misra, S. C., Prasad, S. V. S., Rebetzke, G. J., … Watt, M. (2012). Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops. Journal of Experimental Botany, 63(9), 3485-3498. doi:10.1093/jxb/ers111

Westengen, O. T., Jeppson, S., & Guarino, L. (2013). Global Ex-Situ Crop Diversity Conservation and the Svalbard Global Seed Vault: Assessing the Current Status. PLoS ONE, 8(5), e64146. doi:10.1371/journal.pone.0064146

Wezel, A., Bellon, S., Doré, T., Francis, C., Vallod, D., & David, C. (2011). Agroecology as a Science, a Movement and a Practice. Sustainable Agriculture Volume 2, 27-43. doi:10.1007/978-94-007-0394-0_3

Wezel, A., Casagrande, M., Celette, F., Vian, J.-F., Ferrer, A., & Peigné, J. (2013). Agroecological practices for sustainable agriculture. A review. Agronomy for Sustainable Development, 34(1), 1-20. doi:10.1007/s13593-013-0180-7

Xu, K., Riaz, S., Roncoroni, N. C., Jin, Y., Hu, R., Zhou, R., & Walker, M. A. (2007). Genetic and QTL analysis of resistance to Xiphinema index in a grapevine cross. Theoretical and Applied Genetics, 116(2), 305-311. doi:10.1007/s00122-007-0670-6

Xu, X., & Bai, G. (2015). Whole-genome resequencing: changing the paradigms of SNP detection, molecular mapping and gene discovery. Molecular Breeding, 35(1). doi:10.1007/s11032-015-0240-6

Xu, C., Park, S. J., Van Eck, J., & Lippman, Z. B. (2016). Control of inflorescence architecture in tomato by BTB/POZ transcriptional regulators. Genes & Development, 30(18), 2048-2061. doi:10.1101/gad.288415.116

Yang, H., Li, C., Lam, H.-M., Clements, J., Yan, G., & Zhao, S. (2015). Sequencing consolidates molecular markers with plant breeding practice. Theoretical and Applied Genetics, 128(5), 779-795. doi:10.1007/s00122-015-2499-8

Yin, Y.-G., Kobayashi, Y., Sanuki, A., Kondo, S., Fukuda, N., Ezura, H., … Matsukura, C. (2009). Salinity induces carbohydrate accumulation and sugar-regulated starch biosynthetic genes in tomato (Solanum lycopersicum L. cv. ‘Micro-Tom’) fruits in an ABA- and osmotic stress-independent manner. Journal of Experimental Botany, 61(2), 563-574. doi:10.1093/jxb/erp333

Zanor, M. I., Rambla, J.-L., Chaïb, J., Steppa, A., Medina, A., Granell, A., … Causse, M. (2009). Metabolic characterization of loci affecting sensory attributes in tomato allows an assessment of the influence of the levels of primary metabolites and volatile organic contents. Journal of Experimental Botany, 60(7), 2139-2154. doi:10.1093/jxb/erp086

Zhang, J., Zhao, J., Xu, Y., Liang, J., Chang, P., Yan, F., … Zou, Z. (2015). Genome-Wide Association Mapping for Tomato Volatiles Positively Contributing to Tomato Flavor. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.01042

Zhang, Y., Butelli, E., De Stefano, R., Schoonbeek, H., Magusin, A., Pagliarani, C., … Martin, C. (2013). Anthocyanins Double the Shelf Life of Tomatoes by Delaying Overripening and Reducing Susceptibility to Gray Mold. Current Biology, 23(12), 1094-1100. doi:10.1016/j.cub.2013.04.072

Zhao, Q., Zhang, H., Wang, T., Chen, S., & Dai, S. (2013). Proteomics-based investigation of salt-responsive mechanisms in plant roots. Journal of Proteomics, 82, 230-253. doi:10.1016/j.jprot.2013.01.024

Zhong, S., Fei, Z., Chen, Y.-R., Zheng, Y., Huang, M., Vrebalov, J., … Giovannoni, J. J. (2013). Single-base resolution methylomes of tomato fruit development reveal epigenome modifications associated with ripening. Nature Biotechnology, 31(2), 154-159. doi:10.1038/nbt.2462

Zhu, C., Gore, M., Buckler, E. S., & Yu, J. (2008). Status and Prospects of Association Mapping in Plants. The Plant Genome, 1(1), 5-20. doi:10.3835/plantgenome2008.02.0089

Zyprian, E., Ochßner, I., Schwander, F., Šimon, S., Hausmann, L., Bonow-Rex, M., … Töpfer, R. (2016). Quantitative trait loci affecting pathogen resistance and ripening of grapevines. Molecular Genetics and Genomics, 291(4), 1573-1594. doi:10.1007/s00438-016-1200-5

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record