- -

Use of natural diversity and biotechnology approaches to increase quality and nutritional content of tomato and grape

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Use of natural diversity and biotechnology approaches to increase quality and nutritional content of tomato and grape

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gascuel, Quentin es_ES
dc.contributor.author Diretto, G. es_ES
dc.contributor.author Monforte Gilabert, Antonio José es_ES
dc.contributor.author Fortes, Ana Margarida es_ES
dc.contributor.author GRANELL RICHART, ANTONIO es_ES
dc.date.accessioned 2020-07-30T03:35:23Z
dc.date.available 2020-07-30T03:35:23Z
dc.date.issued 2017-05-12 es_ES
dc.identifier.uri http://hdl.handle.net/10251/148901
dc.description.abstract [EN] Improving fruit quality has become a major goal in plant breeding. Direct approaches to tackling fruit quality traits specifically linked to consumer preferences and environmental friendliness, such as improved flavor, nutraceutical compounds, and sustainability, have slowly been added to a breeder priority list that already includes traits like productivity, efficiency, and, especially, pest and disease control. Breeders already use molecular genetic tools to improve fruit quality although most advances have been made in producer and industrial quality standards. Furthermore, progress has largely been limited to simple agronomic traits easy-to-observe, whereas the vast majority of quality attributes, specifically those relating to flavor and nutrition, are complex and have mostly been neglected. Fortunately, wild germplasm, which is used for resistance against/tolerance of environmental stresses (including pathogens), is still available and harbors significant genetic variation for taste and health-promoting traits. Similarly, heirloom/traditional varieties could be used to identify which genes contribute to flavor and health quality and, at the same time, serve as a good source of the best alleles for organoleptic quality improvement. Grape (Vitis vinifera L.) and tomato (Solanum lycopersicum L.) produce fleshy, berry-type fruits, among the most consumed in the world. Both have undergone important domestication and selection processes, that have dramatically reduced their genetic variability, and strongly standardized fruit traits. Moreover, more and more consumers are asking for sustainable production, incompatible with the wide range of chemical inputs. In the present paper, we review the genetic resources available to tomato/grape breeders, and the recent technological progresses that facilitate the identification of genes/alleles of interest within the natural or generated variability gene pool. These technologies include omics, high-throughput phenotyping/phenomics, and biotech approaches. Our review also covers a range of technologies used to transfer to tomato and grape those alleles considered of interest for fruit quality. These include traditional breeding, TILLING (Targeting Induced Local Lesions in Genomes), genetic engineering, or NPBT (New Plant Breeding Technologies). Altogether, the combined exploitation of genetic variability and innovative biotechnological tools may facilitate breeders to improve fruit quality tacking more into account the consumer standards and the needs to move forward into more sustainable farming practices. es_ES
dc.description.sponsorship AF was provided by the Portuguese Foundation for Science and Technology (SFRH/BPD/100928/2014, FCT Investigator IF/00169/2015, PEst-OE/BIA/UI4046/2014), and to AG by the EC H2020 program (TRADITOM project 634561). QG benefited of the support of the Sunrise project ANR-11-BTBR-0005 funded by the ANR. The authors would like to thank the COST (European Cooperation in Science and Technology) Action FA1106 Quality fruit and Action CA15136 EUROCAROTEN. es_ES
dc.language Inglés es_ES
dc.publisher Frontiers Media SA es_ES
dc.relation.ispartof Frontiers in Plant Science es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Fruit quality es_ES
dc.subject Germplasm es_ES
dc.subject Grape es_ES
dc.subject Omics es_ES
dc.subject New plant breeding techniques es_ES
dc.subject Tomato es_ES
dc.subject QTLs es_ES
dc.title Use of natural diversity and biotechnology approaches to increase quality and nutritional content of tomato and grape es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3389/fpls.2017.00652 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/634561/EU/Traditional tomato varieties and cultural practices: a case for agricultural diversification with impact on food security and health of European population/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/COST//CA15136/EU/European network to advance carotenoid research and applications in agro-food and health (EUROCAROTEN)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT/5876/136073/PT/Strategic Project - UI 4046 - 2014/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ANR//ANR-11-BTBR-0005/FR/Ressources génétiques de tournesol pour l'amélioration de la stabilité de production d'huile sous c/SUNRISE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/COST//FA1106/EU/An integrated systems approach to determine the developmental mechanisms controlling fleshy fruit quality in tomato and grapevine/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Gascuel, Q.; Diretto, G.; Monforte Gilabert, AJ.; Fortes, AM.; Granell Richart, A. (2017). Use of natural diversity and biotechnology approaches to increase quality and nutritional content of tomato and grape. Frontiers in Plant Science. 8:11-34. https://doi.org/10.3389/fpls.2017.00652 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3389/fpls.2017.00652 es_ES
dc.description.upvformatpinicio 11 es_ES
dc.description.upvformatpfin 34 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.identifier.eissn 1664-462X es_ES
dc.identifier.pmid 28553296 es_ES
dc.identifier.pmcid PMC5427129 es_ES
dc.relation.pasarela S\357631 es_ES
dc.contributor.funder Agence Nationale de la Recherche, Francia es_ES
dc.contributor.funder European Cooperation in Science and Technology es_ES
dc.description.references Abbo, S., Pinhasi van-Oss, R., Gopher, A., Saranga, Y., Ofner, I., & Peleg, Z. (2014). Plant domestication versus crop evolution: a conceptual framework for cereals and grain legumes. Trends in Plant Science, 19(6), 351-360. doi:10.1016/j.tplants.2013.12.002 es_ES
dc.description.references Agudelo-Romero, P., Erban, A., Rego, C., Carbonell-Bejerano, P., Nascimento, T., Sousa, L., … Fortes, A. M. (2015). Transcriptome and metabolome reprogramming in Vitis vinifera cv. Trincadeira berries upon infection with Botrytis cinerea. Journal of Experimental Botany, 66(7), 1769-1785. doi:10.1093/jxb/eru517 es_ES
dc.description.references Agudelo-Romero, P., Erban, A., Sousa, L., Pais, M. S., Kopka, J., & Fortes, A. M. (2013). Search for Transcriptional and Metabolic Markers of Grape Pre-Ripening and Ripening and Insights into Specific Aroma Development in Three Portuguese Cultivars. PLoS ONE, 8(4), e60422. doi:10.1371/journal.pone.0060422 es_ES
dc.description.references Andersen, M. M., Landes, X., Xiang, W., Anyshchenko, A., Falhof, J., Østerberg, J. T., … Palmgren, M. G. (2015). Feasibility of new breeding techniques for organic farming. Trends in Plant Science, 20(7), 426-434. doi:10.1016/j.tplants.2015.04.011 es_ES
dc.description.references Andrade-Sanchez, P., Gore, M. A., Heun, J. T., Thorp, K. R., Carmo-Silva, A. E., French, A. N., … White, J. W. (2014). Development and evaluation of a field-based high-throughput phenotyping platform. Functional Plant Biology, 41(1), 68. doi:10.1071/fp13126 es_ES
dc.description.references Anesi, A., Stocchero, M., Dal Santo, S., Commisso, M., Zenoni, S., Ceoldo, S., … Guzzo, F. (2015). Towards a scientific interpretation of the terroir concept: plasticity of the grape berry metabolome. BMC Plant Biology, 15(1). doi:10.1186/s12870-015-0584-4 es_ES
dc.description.references Aoki, K., Ogata, Y., Igarashi, K., Yano, K., Nagasaki, H., Kaminuma, E., & Toyoda, A. (2013). Functional genomics of tomato in a post-genome-sequencing phase. Breeding Science, 63(1), 14-20. doi:10.1270/jsbbs.63.14 es_ES
dc.description.references Apel, W., & Bock, R. (2009). Enhancement of Carotenoid Biosynthesis in Transplastomic Tomatoes by Induced Lycopene-to-Provitamin A Conversion. Plant Physiology, 151(1), 59-66. doi:10.1104/pp.109.140533 es_ES
dc.description.references Araus, J. L., & Cairns, J. E. (2014). Field high-throughput phenotyping: the new crop breeding frontier. Trends in Plant Science, 19(1), 52-61. doi:10.1016/j.tplants.2013.09.008 es_ES
dc.description.references Arms, E. M., Bloom, A. J., & St. Clair, D. A. (2015). High-resolution mapping of a major effect QTL from wild tomato Solanum habrochaites that influences water relations under root chilling. Theoretical and Applied Genetics, 128(9), 1713-1724. doi:10.1007/s00122-015-2540-y es_ES
dc.description.references Bai, H., Tao, F., Xiao, D., Liu, F., & Zhang, H. (2015). Attribution of yield change for rice-wheat rotation system in China to climate change, cultivars and agronomic management in the past three decades. Climatic Change, 135(3-4), 539-553. doi:10.1007/s10584-015-1579-8 es_ES
dc.description.references Bai, Y., & Lindhout, P. (2007). Domestication and Breeding of Tomatoes: What have We Gained and What Can We Gain in the Future? Annals of Botany, 100(5), 1085-1094. doi:10.1093/aob/mcm150 es_ES
dc.description.references Barba, P., Cadle-Davidson, L., Harriman, J., Glaubitz, J. C., Brooks, S., Hyma, K., & Reisch, B. (2013). Grapevine powdery mildew resistance and susceptibility loci identified on a high-resolution SNP map. Theoretical and Applied Genetics, 127(1), 73-84. doi:10.1007/s00122-013-2202-x es_ES
dc.description.references Barbier de Reuille, P., Routier-Kierzkowska, A.-L., Kierzkowski, D., Bassel, G. W., Schüpbach, T., Tauriello, G., … Smith, R. S. (2015). MorphoGraphX: A platform for quantifying morphogenesis in 4D. eLife, 4. doi:10.7554/elife.05864 es_ES
dc.description.references Barker, C. L., Donald, T., Pauquet, J., Ratnaparkhe, M. B., Bouquet, A., Adam-Blondon, A.-F., … Dry, I. (2005). Genetic and physical mapping of the grapevine powdery mildew resistance gene, Run1, using a bacterial artificial chromosome library. Theoretical and Applied Genetics, 111(2), 370-377. doi:10.1007/s00122-005-2030-8 es_ES
dc.description.references Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., … Horvath, P. (2007). CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes. Science, 315(5819), 1709-1712. doi:10.1126/science.1138140 es_ES
dc.description.references Barrantes, W., Fernández-del-Carmen, A., López-Casado, G., González-Sánchez, M. Á., Fernández-Muñoz, R., Granell, A., & Monforte, A. J. (2014). Highly efficient genomics-assisted development of a library of introgression lines of Solanum pimpinellifolium. Molecular Breeding, 34(4), 1817-1831. doi:10.1007/s11032-014-0141-0 es_ES
dc.description.references Barsan, C., Zouine, M., Maza, E., Bian, W., Egea, I., Rossignol, M., … Pech, J.-C. (2012). Proteomic Analysis of Chloroplast-to-Chromoplast Transition in Tomato Reveals Metabolic Shifts Coupled with Disrupted Thylakoid Biogenesis Machinery and Elevated Energy-Production Components. Plant Physiology, 160(2), 708-725. doi:10.1104/pp.112.203679 es_ES
dc.description.references Bélanger, M. ‐C., Roger, J. ‐M., Cartolaro, P., Viau, A. A., & Bellon‐Maurel, V. (2008). Detection of powdery mildew in grapevine using remotely sensed UV‐induced fluorescence. International Journal of Remote Sensing, 29(6), 1707-1724. doi:10.1080/01431160701395245 es_ES
dc.description.references Berger, S., Papadopoulos, M., Schreiber, U., Kaiser, W., & Roitsch, T. (2004). Complex regulation of gene expression, photosynthesis and sugar levels by pathogen infection in tomato. Physiologia Plantarum, 122(4), 419-428. doi:10.1111/j.1399-3054.2004.00433.x es_ES
dc.description.references Bergougnoux, V. (2014). The history of tomato: From domestication to biopharming. Biotechnology Advances, 32(1), 170-189. doi:10.1016/j.biotechadv.2013.11.003 es_ES
dc.description.references Bernacchi, D., Beck-Bunn, T., Eshed, Y., Lopez, J., Petiard, V., Uhlig, J., … Tanksley, S. (1998). Advanced backcross QTL analysis in tomato. I. Identification of QTLs for traits of agronomic importance from Lycopersicon hirsutum. Theoretical and Applied Genetics, 97(3), 381-397. doi:10.1007/s001220050908 es_ES
dc.description.references Bernardo, R. (2008). Molecular Markers and Selection for Complex Traits in Plants: Learning from the Last 20 Years. Crop Science, 48(5), 1649-1664. doi:10.2135/cropsci2008.03.0131 es_ES
dc.description.references Biais, B., Bénard, C., Beauvoit, B., Colombié, S., Prodhomme, D., Ménard, G., … Gibon, Y. (2014). Remarkable Reproducibility of Enzyme Activity Profiles in Tomato Fruits Grown under Contrasting Environments Provides a Roadmap for Studies of Fruit Metabolism. Plant Physiology, 164(3), 1204-1221. doi:10.1104/pp.113.231241 es_ES
dc.description.references Bino, R. J., De Vos, C. H. R., Lieberman, M., Hall, R. D., Bovy, A., Jonker, H. H., … Levin, I. (2005). The light-hyperresponsive high pigment-2dg mutation of tomato: alterations in the fruit metabolome. New Phytologist, 166(2), 427-438. doi:10.1111/j.1469-8137.2005.01362.x es_ES
dc.description.references Blanca, J., Montero-Pau, J., Sauvage, C., Bauchet, G., Illa, E., Díez, M. J., … Cañizares, J. (2015). Genomic variation in tomato, from wild ancestors to contemporary breeding accessions. BMC Genomics, 16(1). doi:10.1186/s12864-015-1444-1 es_ES
dc.description.references Boggess, M. V., Lippolis, J. D., Hurkman, W. J., Fagerquist, C. K., Briggs, S. P., Gomes, A. V., … Bala, K. (2013). The need for agriculture phenotyping: «Moving from genotype to phenotype». Journal of Proteomics, 93, 20-39. doi:10.1016/j.jprot.2013.03.021 es_ES
dc.description.references Bogs, J., Ebadi, A., McDavid, D., & Robinson, S. P. (2005). Identification of the Flavonoid Hydroxylases from Grapevine and Their Regulation during Fruit Development. Plant Physiology, 140(1), 279-291. doi:10.1104/pp.105.073262 es_ES
dc.description.references Bogs, J., Jaffé, F. W., Takos, A. M., Walker, A. R., & Robinson, S. P. (2007). The Grapevine Transcription Factor VvMYBPA1 Regulates Proanthocyanidin Synthesis during Fruit Development. Plant Physiology, 143(3), 1347-1361. doi:10.1104/pp.106.093203 es_ES
dc.description.references Bolger, M. E., Weisshaar, B., Scholz, U., Stein, N., Usadel, B., & Mayer, K. F. (2014). Plant genome sequencing — applications for crop improvement. Current Opinion in Biotechnology, 26, 31-37. doi:10.1016/j.copbio.2013.08.019 es_ES
dc.description.references Broman, K. W. (2004). The Genomes of Recombinant Inbred Lines. Genetics, 169(2), 1133-1146. doi:10.1534/genetics.104.035212 es_ES
dc.description.references Brooks, C., Nekrasov, V., Lippman, Z. B., & Van Eck, J. (2014). Efficient Gene Editing in Tomato in the First Generation Using the Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-Associated9 System. PLANT PHYSIOLOGY, 166(3), 1292-1297. doi:10.1104/pp.114.247577 es_ES
dc.description.references Burbidge, A., Grieve, T. M., Jackson, A., Thompson, andrew, McCarty, D. R., & Taylor, I. B. (1999). Characterization of the ABA-deficient tomato mutantnotabilisand its relationship with maizeVp14. The Plant Journal, 17(4), 427-431. doi:10.1046/j.1365-313x.1999.00386.x es_ES
dc.description.references Calafiore, R., Ruggieri, V., Raiola, A., Rigano, M. M., Sacco, A., Hassan, M. I., … Barone, A. (2016). Exploiting Genomics Resources to Identify Candidate Genes Underlying Antioxidants Content in Tomato Fruit. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.00397 es_ES
dc.description.references Capel, C., Fernández del Carmen, A., Alba, J. M., Lima-Silva, V., Hernández-Gras, F., Salinas, M., … Lozano, R. (2015). Wide-genome QTL mapping of fruit quality traits in a tomato RIL population derived from the wild-relative species Solanum pimpinellifolium L. Theoretical and Applied Genetics, 128(10), 2019-2035. doi:10.1007/s00122-015-2563-4 es_ES
dc.description.references Carrera, J., Fernández del Carmen, A., Fernández-Muñoz, R., Rambla, J. L., Pons, C., Jaramillo, A., … Granell, A. (2012). Fine-Tuning Tomato Agronomic Properties by Computational Genome Redesign. PLoS Computational Biology, 8(6), e1002528. doi:10.1371/journal.pcbi.1002528 es_ES
dc.description.references Causse, M. (2004). A genetic map of candidate genes and QTLs involved in tomato fruit size and composition. Journal of Experimental Botany, 55(403), 1671-1685. doi:10.1093/jxb/erh207 es_ES
dc.description.references Cavallini, E., Matus, J. T., Finezzo, L., Zenoni, S., Loyola, R., Guzzo, F., … Tornielli, G. B. (2015). The Phenylpropanoid Pathway Is Controlled at Different Branches by a Set of R2R3-MYB C2 Repressors in Grapevine. Plant Physiology, 167(4), 1448-1470. doi:10.1104/pp.114.256172 es_ES
dc.description.references Cavanagh, C., Morell, M., Mackay, I., & Powell, W. (2008). From mutations to MAGIC: resources for gene discovery, validation and delivery in crop plants. Current Opinion in Plant Biology, 11(2), 215-221. doi:10.1016/j.pbi.2008.01.002 es_ES
dc.description.references Cebolla-Cornejo, J., Roselló, S., & Nuez, F. (2013). Phenotypic and genetic diversity of Spanish tomato landraces. Scientia Horticulturae, 162, 150-164. doi:10.1016/j.scienta.2013.07.044 es_ES
dc.description.references Čermák, T., Baltes, N. J., Čegan, R., Zhang, Y., & Voytas, D. F. (2015). High-frequency, precise modification of the tomato genome. Genome Biology, 16(1). doi:10.1186/s13059-015-0796-9 es_ES
dc.description.references Chaerle, L., Lenk, S., Leinonen, I., Jones, H. G., Van Der Straeten, D., & Buschmann, C. (2009). Multi-sensor plant imaging: Towards the development of a stress-catalogue. Biotechnology Journal, 4(8), 1152-1167. doi:10.1002/biot.200800242 es_ES
dc.description.references Chaïb, J., Lecomte, L., Buret, M., & Causse, M. (2006). Stability over genetic backgrounds, generations and years of quantitative trait locus (QTLs) for organoleptic quality in tomato. Theoretical and Applied Genetics, 112(5), 934-944. doi:10.1007/s00122-005-0197-7 es_ES
dc.description.references Chalhoub, B., Denoeud, F., Liu, S., Parkin, I. A. P., Tang, H., Wang, X., … Samans, B. (2014). Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science, 345(6199), 950-953. doi:10.1126/science.1253435 es_ES
dc.description.references Chappell, M. J., & LaValle, L. A. (2009). Food security and biodiversity: can we have both? An agroecological analysis. Agriculture and Human Values, 28(1), 3-26. doi:10.1007/s10460-009-9251-4 es_ES
dc.description.references Chen, G., Hackett, R., Walker, D., Taylor, A., Lin, Z., & Grierson, D. (2004). Identification of a Specific Isoform of Tomato Lipoxygenase (TomloxC) Involved in the Generation of Fatty Acid-Derived Flavor Compounds. Plant Physiology, 136(1), 2641-2651. doi:10.1104/pp.104.041608 es_ES
dc.description.references Chen, J., Wang, N., Fang, L.-C., Liang, Z.-C., Li, S.-H., & Wu, B.-H. (2015). Construction of a high-density genetic map and QTLs mapping for sugars and acids in grape berries. BMC Plant Biology, 15(1), 28. doi:10.1186/s12870-015-0428-2 es_ES
dc.description.references Chen, X., Chen, F., Chen, Y., Gao, Q., Yang, X., Yuan, L., … Mi, G. (2012). Modern maize hybrids in Northeast China exhibit increased yield potential and resource use efficiency despite adverse climate change. Global Change Biology, 19(3), 923-936. doi:10.1111/gcb.12093 es_ES
dc.description.references Coleman, C., Copetti, D., Cipriani, G., Hoffmann, S., Kozma, P., Kovacs, L., … Di Gaspero, G. (2009). The powdery mildew resistance gene REN1 co-segregates with an NBS-LRR gene cluster in two Central Asian grapevines. BMC Genetics, 10(1), 89. doi:10.1186/1471-2156-10-89 es_ES
dc.description.references Collard, B. C. Y., Jahufer, M. Z. Z., Brouwer, J. B., & Pang, E. C. K. (2005). An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica, 142(1-2), 169-196. doi:10.1007/s10681-005-1681-5 es_ES
dc.description.references Corrado, G., Piffanelli, P., Caramante, M., Coppola, M., & Rao, R. (2013). SNP genotyping reveals genetic diversity between cultivated landraces and contemporary varieties of tomato. BMC Genomics, 14(1), 835. doi:10.1186/1471-2164-14-835 es_ES
dc.description.references Czemmel, S., Stracke, R., Weisshaar, B., Cordon, N., Harris, N. N., Walker, A. R., … Bogs, J. (2009). The Grapevine R2R3-MYB Transcription Factor VvMYBF1 Regulates Flavonol Synthesis in Developing Grape Berries. Plant Physiology, 151(3), 1513-1530. doi:10.1104/pp.109.142059 es_ES
dc.description.references D’Ambrosio, C., Giorio, G., Marino, I., Merendino, A., Petrozza, A., Salfi, L., … Cellini, F. (2004). Virtually complete conversion of lycopene into β-carotene in fruits of tomato plants transformed with the tomato lycopene β-cyclase (tlcy-b) cDNA. Plant Science, 166(1), 207-214. doi:10.1016/j.plantsci.2003.09.015 es_ES
dc.description.references D’Ambrosio, C., Stigliani, A. L., & Giorio, G. (2010). Overexpression of CrtR-b2 (carotene beta hydroxylase 2) from S. lycopersicum L. differentially affects xanthophyll synthesis and accumulation in transgenic tomato plants. Transgenic Research, 20(1), 47-60. doi:10.1007/s11248-010-9387-4 es_ES
dc.description.references D’Esposito, D., Ferriello, F., Molin, A. D., Diretto, G., Sacco, A., Minio, A., … Ercolano, M. R. (2017). Unraveling the complexity of transcriptomic, metabolomic and quality environmental response of tomato fruit. BMC Plant Biology, 17(1). doi:10.1186/s12870-017-1008-4 es_ES
dc.description.references Paula de Toledo Thomazella, D., Brail, Q., Dahlbeck, D., & Staskawicz, B. (2016). CRISPR-Cas9 mediated mutagenesis of a DMR6 ortholog in tomato confers broad-spectrum disease resistance. doi:10.1101/064824 es_ES
dc.description.references De Vos, R. C., Moco, S., Lommen, A., Keurentjes, J. J., Bino, R. J., & Hall, R. D. (2007). Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nature Protocols, 2(4), 778-791. doi:10.1038/nprot.2007.95 es_ES
dc.description.references Deery, D., Jimenez-Berni, J., Jones, H., Sirault, X., & Furbank, R. (2014). Proximal Remote Sensing Buggies and Potential Applications for Field-Based Phenotyping. Agronomy, 4(3), 349-379. doi:10.3390/agronomy4030349 es_ES
dc.description.references Degu, A., Hochberg, U., Sikron, N., Venturini, L., Buson, G., Ghan, R., … Fait, A. (2014). Metabolite and transcript profiling of berry skin during fruit development elucidates differential regulation between Cabernet Sauvignon and Shiraz cultivars at branching points in the polyphenol pathway. BMC Plant Biology, 14(1). doi:10.1186/s12870-014-0188-4 es_ES
dc.description.references Deluc, L., Barrieu, F., Marchive, C., Lauvergeat, V., Decendit, A., Richard, T., … Hamdi, S. (2005). Characterization of a Grapevine R2R3-MYB Transcription Factor That Regulates the Phenylpropanoid Pathway. Plant Physiology, 140(2), 499-511. doi:10.1104/pp.105.067231 es_ES
dc.description.references Deluc, L., Bogs, J., Walker, A. R., Ferrier, T., Decendit, A., Merillon, J.-M., … Barrieu, F. (2008). The Transcription Factor VvMYB5b Contributes to the Regulation of Anthocyanin and Proanthocyanidin Biosynthesis in Developing Grape Berries. Plant Physiology, 147(4), 2041-2053. doi:10.1104/pp.108.118919 es_ES
dc.description.references Deytieux, C., Geny, L., Lapaillerie, D., Claverol, S., Bonneu, M., & Doneche, B. (2007). Proteome analysis of grape skins during ripening. Journal of Experimental Botany, 58(7), 1851-1862. doi:10.1093/jxb/erm049 es_ES
dc.description.references Dharmapuri, S., Rosati, C., Pallara, P., Aquilani, R., Bouvier, F., Camara, B., & Giuliano, G. (2002). Metabolic engineering of xanthophyll content in tomato fruits. FEBS Letters, 519(1-3), 30-34. doi:10.1016/s0014-5793(02)02699-6 es_ES
dc.description.references Diaz de la Garza, R. I., Gregory, J. F., & Hanson, A. D. (2007). Folate biofortification of tomato fruit. Proceedings of the National Academy of Sciences, 104(10), 4218-4222. doi:10.1073/pnas.0700409104 es_ES
dc.description.references Doligez, A., Bertrand, Y., Farnos, M., Grolier, M., Romieu, C., Esnault, F., … This, P. (2013). New stable QTLs for berry weight do not colocalize with QTLs for seed traits in cultivated grapevine (Vitis vinifera L.). BMC Plant Biology, 13(1), 217. doi:10.1186/1471-2229-13-217 es_ES
dc.description.references Doucleff, M., Jin, Y., Gao, F., Riaz, S., Krivanek, A. F., & Walker, M. A. (2004). A genetic linkage map of grape, utilizing Vitis rupestris and Vitis arizonica. Theoretical and Applied Genetics, 109(6), 1178-1187. doi:10.1007/s00122-004-1728-3 es_ES
dc.description.references Dresbøll, D. B., Thorup-Kristensen, K., McKenzie, B. M., Dupuy, L. X., & Bengough, A. G. (2013). Timelapse scanning reveals spatial variation in tomato (Solanum lycopersicum L.) root elongation rates during partial waterlogging. Plant and Soil, 369(1-2), 467-477. doi:10.1007/s11104-013-1592-5 es_ES
dc.description.references Duchêne, E., Butterlin, G., Dumas, V., & Merdinoglu, D. (2011). Towards the adaptation of grapevine varieties to climate change: QTLs and candidate genes for developmental stages. Theoretical and Applied Genetics, 124(4), 623-635. doi:10.1007/s00122-011-1734-1 es_ES
dc.description.references Eitel, J. U. H., Vierling, L. A., Long, D. S., & Hunt, E. R. (2011). Early season remote sensing of wheat nitrogen status using a green scanning laser. Agricultural and Forest Meteorology, 151(10), 1338-1345. doi:10.1016/j.agrformet.2011.05.015 es_ES
dc.description.references Elizondo, R., & Oyanedel, E. (2010). Field Testing of Tomato Chilling Tolerance under Varying Light and Temperature Conditions. Chilean journal of agricultural research, 70(4), 552-558. doi:10.4067/s0718-58392010000400004 es_ES
dc.description.references Etalo, D. W., Stulemeijer, I. J. E., Peter van Esse, H., de Vos, R. C. H., Bouwmeester, H. J., & Joosten, M. H. A. J. (2013). System-Wide Hypersensitive Response-Associated Transcriptome and Metabolome Reprogramming in Tomato. PLANT PHYSIOLOGY, 162(3), 1599-1617. doi:10.1104/pp.113.217471 es_ES
dc.description.references Fahlgren, N., Gehan, M. A., & Baxter, I. (2015). Lights, camera, action: high-throughput plant phenotyping is ready for a close-up. Current Opinion in Plant Biology, 24, 93-99. doi:10.1016/j.pbi.2015.02.006 es_ES
dc.description.references Fantini, E., Falcone, G., Frusciante, S., Giliberto, L., & Giuliano, G. (2013). Dissection of Tomato Lycopene Biosynthesis through Virus-Induced Gene Silencing. PLANT PHYSIOLOGY, 163(2), 986-998. doi:10.1104/pp.113.224733 es_ES
dc.description.references Feechan, A., Anderson, C., Torregrosa, L., Jermakow, A., Mestre, P., Wiedemann-Merdinoglu, S., … Dry, I. B. (2013). Genetic dissection of a TIR-NB-LRR locus from the wild North American grapevine speciesMuscadinia rotundifoliaidentifies paralogous genes conferring resistance to major fungal and oomycete pathogens in cultivated grapevine. The Plant Journal, 76(4), 661-674. doi:10.1111/tpj.12327 es_ES
dc.description.references Fernie, A. R., Tadmor, Y., & Zamir, D. (2006). Natural genetic variation for improving crop quality. Current Opinion in Plant Biology, 9(2), 196-202. doi:10.1016/j.pbi.2006.01.010 es_ES
dc.description.references Fiorani, F., & Schurr, U. (2013). Future Scenarios for Plant Phenotyping. Annual Review of Plant Biology, 64(1), 267-291. doi:10.1146/annurev-arplant-050312-120137 es_ES
dc.description.references Fiorani, F., Rascher, U., Jahnke, S., & Schurr, U. (2012). Imaging plants dynamics in heterogenic environments. Current Opinion in Biotechnology, 23(2), 227-235. doi:10.1016/j.copbio.2011.12.010 es_ES
dc.description.references Fischer, B. M., Salakhutdinov, I., Akkurt, M., Eibach, R., Edwards, K. J., Töpfer, R., & Zyprian, E. M. (2003). Quantitative trait locus analysis of fungal disease resistance factors on a molecular map of grapevine. Theoretical and Applied Genetics, 108(3), 501-515. doi:10.1007/s00122-003-1445-3 es_ES
dc.description.references Fodor, A., Segura, V., Denis, M., Neuenschwander, S., Fournier-Level, A., Chatelet, P., … Le Cunff, L. (2014). Genome-Wide Prediction Methods in Highly Diverse and Heterozygous Species: Proof-of-Concept through Simulation in Grapevine. PLoS ONE, 9(11), e110436. doi:10.1371/journal.pone.0110436 es_ES
dc.description.references Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., … Zaks, D. P. M. (2011). Solutions for a cultivated planet. Nature, 478(7369), 337-342. doi:10.1038/nature10452 es_ES
dc.description.references Fortes, A. M., Agudelo-Romero, P., Silva, M. S., Ali, K., Sousa, L., Maltese, F., … Pais, M. S. (2011). Transcript and metabolite analysis in Trincadeira cultivar reveals novel information regarding the dynamics of grape ripening. BMC Plant Biology, 11(1), 149. doi:10.1186/1471-2229-11-149 es_ES
dc.description.references Fortes, A. M., & Gallusci, P. (2017). Plant Stress Responses and Phenotypic Plasticity in the Epigenomics Era: Perspectives on the Grapevine Scenario, a Model for Perennial Crop Plants. Frontiers in Plant Science, 08. doi:10.3389/fpls.2017.00082 es_ES
dc.description.references Fortes, A., Teixeira, R., & Agudelo-Romero, P. (2015). Complex Interplay of Hormonal Signals during Grape Berry Ripening. Molecules, 20(5), 9326-9343. doi:10.3390/molecules20059326 es_ES
dc.description.references Fowler, C. (2008). The Svalbard Seed Vault and Crop Security. BioScience, 58(3), 190-191. doi:10.1641/b580302 es_ES
dc.description.references Francis, C., Lieblein, G., Gliessman, S., Breland, T. A., Creamer, N., Harwood, R., … Poincelot, R. (2003). Agroecology: The Ecology of Food Systems. Journal of Sustainable Agriculture, 22(3), 99-118. doi:10.1300/j064v22n03_10 es_ES
dc.description.references Francisco, R. M., Regalado, A., Ageorges, A., Burla, B. J., Bassin, B., Eisenach, C., … Nagy, R. (2013). ABCC1, an ATP Binding Cassette Protein from Grape Berry, Transports Anthocyanidin 3-O-Glucosides. The Plant Cell, 25(5), 1840-1854. doi:10.1105/tpc.112.102152 es_ES
dc.description.references Fraser, P. D., Enfissi, E. M. A., Halket, J. M., Truesdale, M. R., Yu, D., Gerrish, C., & Bramley, P. M. (2007). Manipulation of Phytoene Levels in Tomato Fruit: Effects on Isoprenoids, Plastids, and Intermediary Metabolism. The Plant Cell, 19(10), 3194-3211. doi:10.1105/tpc.106.049817 es_ES
dc.description.references Fraser, P. D., Romer, S., Shipton, C. A., Mills, P. B., Kiano, J. W., Misawa, N., … Bramley, P. M. (2002). Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit-specific manner. Proceedings of the National Academy of Sciences, 99(2), 1092-1097. doi:10.1073/pnas.241374598 es_ES
dc.description.references Fray, R. G., & Grierson, D. (1993). Identification and genetic analysis of normal and mutant phytoene synthase genes of tomato by sequencing, complementation and co-suppression. Plant Molecular Biology, 22(4), 589-602. doi:10.1007/bf00047400 es_ES
dc.description.references Fridman, E., Pleban, T., & Zamir, D. (2000). A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proceedings of the National Academy of Sciences, 97(9), 4718-4723. doi:10.1073/pnas.97.9.4718 es_ES
dc.description.references Fuentes, S., De Bei, R., Pech, J., & Tyerman, S. (2012). Computational water stress indices obtained from thermal image analysis of grapevine canopies. Irrigation Science, 30(6), 523-536. doi:10.1007/s00271-012-0375-8 es_ES
dc.description.references Fulton, T. M., Beck-Bunn, T., Emmatty, D., Eshed, Y., Lopez, J., Petiard, V., … Tanksley, S. D. (1997). QTL analysis of an advanced backcross of Lycopersicon peruvianum to the cultivated tomato and comparisons with QTLs found in other wild species. Theoretical and Applied Genetics, 95(5-6), 881-894. doi:10.1007/s001220050639 es_ES
dc.description.references Galpaz, N., Ronen, G., Khalfa, Z., Zamir, D., & Hirschberg, J. (2006). A Chromoplast-Specific Carotenoid Biosynthesis Pathway Is Revealed by Cloning of the Tomato white-flower Locus. The Plant Cell, 18(8), 1947-1960. doi:10.1105/tpc.105.039966 es_ES
dc.description.references Galpaz, N., Wang, Q., Menda, N., Zamir, D., & Hirschberg, J. (2008). Abscisic acid deficiency in the tomato mutant high-pigment 3 leading to increased plastid number and higher fruit lycopene content. The Plant Journal, 53(5), 717-730. doi:10.1111/j.1365-313x.2007.03362.x es_ES
dc.description.references George, I. S., Pascovici, D., Mirzaei, M., & Haynes, P. A. (2015). Quantitative proteomic analysis of cabernet sauvignon grape cells exposed to thermal stresses reveals alterations in sugar and phenylpropanoid metabolism. PROTEOMICS, 15(17), 3048-3060. doi:10.1002/pmic.201400541 es_ES
dc.description.references Gepts, P. (2014). The contribution of genetic and genomic approaches to plant domestication studies. Current Opinion in Plant Biology, 18, 51-59. doi:10.1016/j.pbi.2014.02.001 es_ES
dc.description.references Ronen, G., Cohen, M., Zamir, D., & Hirschberg, J. (1999). Regulation of carotenoid biosynthesis during tomato fruit development: expression of the gene for lycopene epsilon-cyclase is down-regulated during ripening and is elevated in the mutantDelta. The Plant Journal, 17(4), 341-351. doi:10.1046/j.1365-313x.1999.00381.x es_ES
dc.description.references Giorio, G., Yildirim, A., Stigliani, A. L., & D’Ambrosio, C. (2013). Elevation of lutein content in tomato: A biochemical tug-of-war between lycopene cyclases. Metabolic Engineering, 20, 167-176. doi:10.1016/j.ymben.2013.10.007 es_ES
dc.description.references Giovanelli, G., Sinelli, N., Beghi, R., Guidetti, R., & Casiraghi, E. (2014). NIR spectroscopy for the optimization of postharvest apple management. Postharvest Biology and Technology, 87, 13-20. doi:10.1016/j.postharvbio.2013.07.041 es_ES
dc.description.references Giovinazzo, G., D’Amico, L., Paradiso, A., Bollini, R., Sparvoli, F., & DeGara, L. (2004). Antioxidant metabolite profiles in tomato fruit constitutively expressing the grapevine stilbene synthase gene. Plant Biotechnology Journal, 3(1), 57-69. doi:10.1111/j.1467-7652.2004.00099.x es_ES
dc.description.references Goldsbrough, A., Belzile, F., & Yoder, J. I. (1994). Complementation of the Tomato anthocyanin without (aw) Mutant Using the Dihydroflavonol 4-Reductase Gene. Plant Physiology, 105(2), 491-496. doi:10.1104/pp.105.2.491 es_ES
dc.description.references Gomez, C., Terrier, N., Torregrosa, L., Vialet, S., Fournier-Level, A., Verriès, C., … Ageorges, A. (2009). Grapevine MATE-Type Proteins Act as Vacuolar H+-Dependent Acylated Anthocyanin Transporters. Plant Physiology, 150(1), 402-415. doi:10.1104/pp.109.135624 es_ES
dc.description.references González-Barreiro, C., Rial-Otero, R., Cancho-Grande, B., & Simal-Gándara, J. (2014). Wine Aroma Compounds in Grapes: A Critical Review. Critical Reviews in Food Science and Nutrition, 55(2), 202-218. doi:10.1080/10408398.2011.650336 es_ES
dc.description.references Goulet, C., Kamiyoshihara, Y., Lam, N. B., Richard, T., Taylor, M. G., Tieman, D. M., & Klee, H. J. (2015). Divergence in the Enzymatic Activities of a Tomato and Solanum pennellii Alcohol Acyltransferase Impacts Fruit Volatile Ester Composition. Molecular Plant, 8(1), 153-162. doi:10.1016/j.molp.2014.11.007 es_ES
dc.description.references Grandillo, S., Termolino, P., & van der Knaap, E. (2013). Molecular Mapping of Complex Traits in Tomato. Genetics, Genomics, and Breeding of Tomato, 150-227. doi:10.1201/b14578-7 es_ES
dc.description.references Ma, H., Chen, S., Yang, J., Chen, S., & Liu, H. (2010). Genetic linkage maps of barfin flounder (Verasper moseri) and spotted halibut (Verasper variegatus) based on AFLP and microsatellite markers. Molecular Biology Reports, 38(7), 4749-4764. doi:10.1007/s11033-010-0612-2 es_ES
dc.description.references Grissa, I., Vergnaud, G., & Pourcel, C. (2007). The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics, 8(1), 172. doi:10.1186/1471-2105-8-172 es_ES
dc.description.references Guillemaud, T., Lombaert, E., & Bourguet, D. (2016). Conflicts of Interest in GM Bt Crop Efficacy and Durability Studies. PLOS ONE, 11(12), e0167777. doi:10.1371/journal.pone.0167777 es_ES
dc.description.references Gur, A., & Zamir, D. (2004). Unused Natural Variation Can Lift Yield Barriers in Plant Breeding. PLoS Biology, 2(10), e245. doi:10.1371/journal.pbio.0020245 es_ES
dc.description.references Handa, A. K., Raheel, A., & Mattoo, A. K. (s. f.). Biotechnology of fruit quality. Fruit ripening: physiology, signalling and genomics, 259-290. doi:10.1079/9781845939625.0259 es_ES
dc.description.references Harrigan, G. G., Martino-Catt, S., & Glenn, K. C. (2007). Metabolomics, metabolic diversity and genetic variation in crops. Metabolomics, 3(3), 259-272. doi:10.1007/s11306-007-0076-0 es_ES
dc.description.references Harrison, E., Burbidge, A., Okyere, J. P., Thompson, A. J., & Taylor, I. B. (2010). Identification of the tomato ABA-deficient mutant sitiens as a member of the ABA-aldehyde oxidase gene family using genetic and genomic analysis. Plant Growth Regulation, 64(3), 301-309. doi:10.1007/s10725-010-9550-1 es_ES
dc.description.references Herzog, K., Wind, R., & Töpfer, R. (2015). Impedance of the Grape Berry Cuticle as a Novel Phenotypic Trait to Estimate Resistance to Botrytis Cinerea. Sensors, 15(6), 12498-12512. doi:10.3390/s150612498 es_ES
dc.description.references Hilioti, Z., Ganopoulos, I., Ajith, S., Bossis, I., & Tsaftaris, A. (2016). A novel arrangement of zinc finger nuclease system for in vivo targeted genome engineering: the tomato LEC1-LIKE4 gene case. Plant Cell Reports, 35(11), 2241-2255. doi:10.1007/s00299-016-2031-x es_ES
dc.description.references Höll, J., Vannozzi, A., Czemmel, S., D’Onofrio, C., Walker, A. R., Rausch, T., … Bogs, J. (2013). The R2R3-MYB Transcription Factors MYB14 and MYB15 Regulate Stilbene Biosynthesis in Vitis vinifera. The Plant Cell, 25(10), 4135-4149. doi:10.1105/tpc.113.117127 es_ES
dc.description.references Honnay, O., Jacquemyn, H., & Aerts, R. (2012). Crop wild relatives: more common ground for breeders and ecologists. Frontiers in Ecology and the Environment, 10(3), 121-121. doi:10.1890/12.wb.007 es_ES
dc.description.references Hosoi, F., & Omasa, K. (2012). Estimation of vertical plant area density profiles in a rice canopy at different growth stages by high-resolution portable scanning lidar with a lightweight mirror. ISPRS Journal of Photogrammetry and Remote Sensing, 74, 11-19. doi:10.1016/j.isprsjprs.2012.08.001 es_ES
dc.description.references Hosoi, F., Nakabayashi, K., & Omasa, K. (2011). 3-D Modeling of Tomato Canopies Using a High-Resolution Portable Scanning Lidar for Extracting Structural Information. Sensors, 11(2), 2166-2174. doi:10.3390/s110202166 es_ES
dc.description.references Houel, C., Chatbanyong, R., Doligez, A., Rienth, M., Foria, S., Luchaire, N., … Torregrosa, L. (2015). Identification of stable QTLs for vegetative and reproductive traits in the microvine (Vitis vinifera L.) using the 18 K Infinium chip. BMC Plant Biology, 15(1). doi:10.1186/s12870-015-0588-0 es_ES
dc.description.references Huang, J.-C., Zhong, Y.-J., Liu, J., Sandmann, G., & Chen, F. (2013). Metabolic engineering of tomato for high-yield production of astaxanthin. Metabolic Engineering, 17, 59-67. doi:10.1016/j.ymben.2013.02.005 es_ES
dc.description.references Huang, Z., & van der Knaap, E. (2011). Tomato fruit weight 11.3 maps close to fasciated on the bottom of chromosome 11. Theoretical and Applied Genetics, 123(3), 465-474. doi:10.1007/s00122-011-1599-3 es_ES
dc.description.references Iijima, Y., Nakamura, Y., Ogata, Y., Tanaka, K., Sakurai, N., Suda, K., … Shibata, D. (2008). Metabolite annotations based on the integration of mass spectral information. The Plant Journal, 54(5), 949-962. doi:10.1111/j.1365-313x.2008.03434.x es_ES
dc.description.references Illa-Berenguer, E., Van Houten, J., Huang, Z., & van der Knaap, E. (2015). Rapid and reliable identification of tomato fruit weight and locule number loci by QTL-seq. Theoretical and Applied Genetics, 128(7), 1329-1342. doi:10.1007/s00122-015-2509-x es_ES
dc.description.references Ishimwe, R., Abutaleb, K., & Ahmed, F. (2014). Applications of Thermal Imaging in Agriculture—A Review. Advances in Remote Sensing, 03(03), 128-140. doi:10.4236/ars.2014.33011 es_ES
dc.description.references Ito, Y., Nishizawa-Yokoi, A., Endo, M., Mikami, M., & Toki, S. (2015). CRISPR/Cas9-mediated mutagenesis of the RIN locus that regulates tomato fruit ripening. Biochemical and Biophysical Research Communications, 467(1), 76-82. doi:10.1016/j.bbrc.2015.09.117 es_ES
dc.description.references Jacobs, T. B., & Martin, G. B. (2016). High-throughput CRISPR Vector Construction and Characterization of DNA Modifications by Generation of Tomato Hairy Roots. Journal of Visualized Experiments, (110). doi:10.3791/53843 es_ES
dc.description.references (2007). The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature, 449(7161), 463-467. doi:10.1038/nature06148 es_ES
dc.description.references Jia, H., & Wang, N. (2014). Targeted Genome Editing of Sweet Orange Using Cas9/sgRNA. PLoS ONE, 9(4), e93806. doi:10.1371/journal.pone.0093806 es_ES
dc.description.references Jiménez-Gómez, J. M., Alonso-Blanco, C., Borja, A., Anastasio, G., Angosto, T., Lozano, R., & Martínez-Zapater, J. M. (2007). Quantitative genetic analysis of flowering time in tomato. Genome, 50(3), 303-315. doi:10.1139/g07-009 es_ES
dc.description.references Jin, W., & Wu, F. (2016). Proteome-Wide Identification of Lysine Succinylation in the Proteins of Tomato (Solanum lycopersicum). PLOS ONE, 11(2), e0147586. doi:10.1371/journal.pone.0147586 es_ES
dc.description.references Ali, K., Maltese, F., Zyprian, E., Rex, M., Choi, Y. H., & Verpoorte, R. (2009). NMR Metabolic Fingerprinting Based Identification of Grapevine Metabolites Associated with Downy Mildew Resistance. Journal of Agricultural and Food Chemistry, 57(20), 9599-9606. doi:10.1021/jf902069f es_ES
dc.description.references Khan, N., Kazmi, R. H., Willems, L. A. J., van Heusden, A. W., Ligterink, W., & Hilhorst, H. W. M. (2012). Exploring the Natural Variation for Seedling Traits and Their Link with Seed Dimensions in Tomato. PLoS ONE, 7(8), e43991. doi:10.1371/journal.pone.0043991 es_ES
dc.description.references Klap, C., Yeshayahou, E., Bolger, A. M., Arazi, T., Gupta, S. K., Shabtai, S., … Barg, R. (2016). Tomato facultative parthenocarpy results from SlAGAMOUS-LIKE 6loss of function. Plant Biotechnology Journal, 15(5), 634-647. doi:10.1111/pbi.12662 es_ES
dc.description.references Klee, H. J. (2010). Improving the flavor of fresh fruits: genomics, biochemistry, and biotechnology. New Phytologist, 187(1), 44-56. doi:10.1111/j.1469-8137.2010.03281.x es_ES
dc.description.references Klee, H. J., & Tieman, D. M. (2013). Genetic challenges of flavor improvement in tomato. Trends in Genetics, 29(4), 257-262. doi:10.1016/j.tig.2012.12.003 es_ES
dc.description.references S., K., M., I., K., H., & C., H. (2002). Myb -related genes of the Kyoho grape ( Vitis labruscana ) regulate anthocyanin biosynthesis. Planta, 215(6), 924-933. doi:10.1007/s00425-002-0830-5 es_ES
dc.description.references Kohlen, W., Charnikhova, T., Lammers, M., Pollina, T., Tóth, P., Haider, I., … López‐Ráez, J. A. (2012). The tomato CAROTENOID CLEAVAGE DIOXYGENASE 8 ( S l CCD 8 ) regulates rhizosphere signaling, plant architecture and affects reproductive development through strigolactone biosynthesis. New Phytologist, 196(2), 535-547. doi:10.1111/j.1469-8137.2012.04265.x es_ES
dc.description.references Krajewski, P., Chen, D., Ćwiek, H., van Dijk, A. D. J., Fiorani, F., Kersey, P., … Weise, S. (2015). Towards recommendations for metadata and data handling in plant phenotyping. Journal of Experimental Botany, 66(18), 5417-5427. doi:10.1093/jxb/erv271 es_ES
dc.description.references Krivanek, A. F., Riaz, S., & Walker, M. A. (2006). Identification and molecular mapping of PdR1, a primary resistance gene to Pierce’s disease in Vitis. Theoretical and Applied Genetics, 112(6), 1125-1131. doi:10.1007/s00122-006-0214-5 es_ES
dc.description.references Kuijken, R. C. P., van Eeuwijk, F. A., Marcelis, L. F. M., & Bouwmeester, H. J. (2015). Root phenotyping: from component trait in the lab to breeding: Table 1. Journal of Experimental Botany, 66(18), 5389-5401. doi:10.1093/jxb/erv239 es_ES
dc.description.references Kumar, R., & Khurana, A. (2014). Functional genomics of tomato: Opportunities and challenges in post-genome NGS era. Journal of Biosciences, 39(5), 917-929. doi:10.1007/s12038-014-9480-6 es_ES
dc.description.references Kurowska, M., Daszkowska-Golec, A., Gruszka, D., Marzec, M., Szurman, M., Szarejko, I., & Maluszynski, M. (2011). TILLING - a shortcut in functional genomics. Journal of Applied Genetics, 52(4), 371-390. doi:10.1007/s13353-011-0061-1 es_ES
dc.description.references Laucou, V., Lacombe, T., Dechesne, F., Siret, R., Bruno, J.-P., Dessup, M., … This, P. (2011). High throughput analysis of grape genetic diversity as a tool for germplasm collection management. Theoretical and Applied Genetics, 122(6), 1233-1245. doi:10.1007/s00122-010-1527-y es_ES
dc.description.references LEGLAND, D., DEVAUX, M.-F., BOUCHET, B., GUILLON, F., & LAHAYE, M. (2012). Cartography of cell morphology in tomato pericarp at the fruit scale. Journal of Microscopy, 247(1), 78-93. doi:10.1111/j.1365-2818.2012.03623.x es_ES
dc.description.references Leida, C., Moser, C., Esteras, C., Sulpice, R., Lunn, J. E., de Langen, F., … Picó, B. (2015). Variability of candidate genes, genetic structure and association with sugar accumulation and climacteric behavior in a broad germplasm collection of melon (Cucumis melo L.). BMC Genetics, 16(1). doi:10.1186/s12863-015-0183-2 es_ES
dc.description.references Li, Z., & Sillanpää, M. J. (2015). Dynamic Quantitative Trait Locus Analysis of Plant Phenomic Data. Trends in Plant Science, 20(12), 822-833. doi:10.1016/j.tplants.2015.08.012 es_ES
dc.description.references Lim, W., Miller, R., Park, J., & Park, S. (2014). Consumer Sensory Analysis of High Flavonoid Transgenic Tomatoes. Journal of Food Science, 79(6), S1212-S1217. doi:10.1111/1750-3841.12478 es_ES
dc.description.references Lin, T., Zhu, G., Zhang, J., Xu, X., Yu, Q., Zheng, Z., … Huang, S. (2014). Genomic analyses provide insights into the history of tomato breeding. Nature Genetics, 46(11), 1220-1226. doi:10.1038/ng.3117 es_ES
dc.description.references Liu, R., How-Kit, A., Stammitti, L., Teyssier, E., Rolin, D., Mortain-Bertrand, A., … Gallusci, P. (2015). A DEMETER-like DNA demethylase governs tomato fruit ripening. Proceedings of the National Academy of Sciences, 112(34), 10804-10809. doi:10.1073/pnas.1503362112 es_ES
dc.description.references Liu, Y.-S., Gur, A., Ronen, G., Causse, M., Damidaux, R., Buret, M., … Zamir, D. (2003). There is more to tomato fruit colour than candidate carotenoid genes. Plant Biotechnology Journal, 1(3), 195-207. doi:10.1046/j.1467-7652.2003.00018.x es_ES
dc.description.references Llorens, J., Gil, E., Llop, J., & Escolà, A. (2011). Ultrasonic and LIDAR Sensors for Electronic Canopy Characterization in Vineyards: Advances to Improve Pesticide Application Methods. Sensors, 11(2), 2177-2194. doi:10.3390/s110202177 es_ES
dc.description.references Long, M., Millar, D. J., Kimura, Y., Donovan, G., Rees, J., Fraser, P. D., … Bolwell, G. P. (2006). Metabolite profiling of carotenoid and phenolic pathways in mutant and transgenic lines of tomato: Identification of a high antioxidant fruit line. Phytochemistry, 67(16), 1750-1757. doi:10.1016/j.phytochem.2006.02.022 es_ES
dc.description.references Lor, V. S., Starker, C. G., Voytas, D. F., Weiss, D., & Olszewski, N. E. (2014). Targeted Mutagenesis of the Tomato PROCERA Gene Using Transcription Activator-Like Effector Nucleases. PLANT PHYSIOLOGY, 166(3), 1288-1291. doi:10.1104/pp.114.247593 es_ES
dc.description.references Lucatti, A. F., van Heusden, A. W., de Vos, R. C., Visser, R. G., & Vosman, B. (2013). Differences in insect resistance between tomato species endemic to the Galapagos Islands. BMC Evolutionary Biology, 13(1), 175. doi:10.1186/1471-2148-13-175 es_ES
dc.description.references Mageroy, M. H., Tieman, D. M., Floystad, A., Taylor, M. G., & Klee, H. J. (2011). A Solanum lycopersicum catechol-O-methyltransferase involved in synthesis of the flavor molecule guaiacol. The Plant Journal, 69(6), 1043-1051. doi:10.1111/j.1365-313x.2011.04854.x es_ES
dc.description.references Malacarne, G., Coller, E., Czemmel, S., Vrhovsek, U., Engelen, K., Goremykin, V., … Moser, C. (2016). The grapevine VvibZIPC22 transcription factor is involved in the regulation of flavonoid biosynthesis. Journal of Experimental Botany, 67(11), 3509-3522. doi:10.1093/jxb/erw181 es_ES
dc.description.references Malacarne, G., Costantini, L., Coller, E., Battilana, J., Velasco, R., Vrhovsek, U., … Moser, C. (2015). Regulation of flavonol content and composition in (Syrah×Pinot Noir) mature grapes: integration of transcriptional profiling and metabolic quantitative trait locus analyses. Journal of Experimental Botany, 66(15), 4441-4453. doi:10.1093/jxb/erv243 es_ES
dc.description.references Marguerit, E., Boury, C., Manicki, A., Donnart, M., Butterlin, G., Némorin, A., … Decroocq, S. (2009). Genetic dissection of sex determinism, inflorescence morphology and downy mildew resistance in grapevine. Theoretical and Applied Genetics, 118(7), 1261-1278. doi:10.1007/s00122-009-0979-4 es_ES
dc.description.references Martin, D. M., Chiang, A., Lund, S. T., & Bohlmann, J. (2012). Biosynthesis of wine aroma: transcript profiles of hydroxymethylbutenyl diphosphate reductase, geranyl diphosphate synthase, and linalool/nerolidol synthase parallel monoterpenol glycoside accumulation in Gewürztraminer grapes. Planta, 236(3), 919-929. doi:10.1007/s00425-012-1704-0 es_ES
dc.description.references Mathieu, S., Cin, V. D., Fei, Z., Li, H., Bliss, P., Taylor, M. G., … Tieman, D. M. (2008). Flavour compounds in tomato fruits: identification of loci and potential pathways affecting volatile composition. Journal of Experimental Botany, 60(1), 325-337. doi:10.1093/jxb/ern294 es_ES
dc.description.references Matsui, K., Ishii, M., Sasaki, M., Rabinowitch, H. D., & Ben-Oliel, G. (2007). Identification of an Allele Attributable to Formation of Cucumber-like Flavor in Wild Tomato Species (Solanum pennellii) That Was Inactivated during Domestication. Journal of Agricultural and Food Chemistry, 55(10), 4080-4086. doi:10.1021/jf063756b es_ES
dc.description.references Maxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence—a practical guide. Journal of Experimental Botany, 51(345), 659-668. doi:10.1093/jexbot/51.345.659 es_ES
dc.description.references Mazzucato, A., Papa, R., Bitocchi, E., Mosconi, P., Nanni, L., Negri, V., … Veronesi, F. (2008). Genetic diversity, structure and marker-trait associations in a collection of Italian tomato (Solanum lycopersicum L.) landraces. Theoretical and Applied Genetics, 116(5), 657-669. doi:10.1007/s00122-007-0699-6 es_ES
dc.description.references Mba, C. (2013). Induced Mutations Unleash the Potentials of Plant Genetic Resources for Food and Agriculture. Agronomy, 3(1), 200-231. doi:10.3390/agronomy3010200 es_ES
dc.description.references McMullen, M. D., Kresovich, S., Villeda, H. S., Bradbury, P., Li, H., Sun, Q., … Buckler, E. S. (2009). Genetic Properties of the Maize Nested Association Mapping Population. Science, 325(5941), 737-740. doi:10.1126/science.1174320 es_ES
dc.description.references Menda, N., Semel, Y., Peled, D., Eshed, Y., & Zamir, D. (2004). In silicoscreening of a saturated mutation library of tomato. The Plant Journal, 38(5), 861-872. doi:10.1111/j.1365-313x.2004.02088.x es_ES
dc.description.references MENZEL, M. I., TITTMANN, S., BÜHLER, J., PREIS, S., WOLTERS, N., JAHNKE, S., … KRAUSE, H.-J. (2009). Non-invasive determination of plant biomass with microwave resonators. Plant, Cell & Environment, 32(4), 368-379. doi:10.1111/j.1365-3040.2009.01931.x es_ES
dc.description.references Meron, M., Sprintsin, M., Tsipris, J., Alchanatis, V., & Cohen, Y. (2013). Foliage temperature extraction from thermal imagery for crop water stress determination. Precision Agriculture, 14(5), 467-477. doi:10.1007/s11119-013-9310-0 es_ES
dc.description.references Mes, P. J., Boches, P., Myers, J. R., & Durst, R. (2008). Characterization of Tomatoes Expressing Anthocyanin in the Fruit. Journal of the American Society for Horticultural Science, 133(2), 262-269. doi:10.21273/jashs.133.2.262 es_ES
dc.description.references Minoia, S., Petrozza, A., D’Onofrio, O., Piron, F., Mosca, G., Sozio, G., … Carriero, F. (2010). A new mutant genetic resource for tomato crop improvement by TILLING technology. BMC Research Notes, 3(1). doi:10.1186/1756-0500-3-69 es_ES
dc.description.references Mishra, K. B., Iannacone, R., Petrozza, A., Mishra, A., Armentano, N., La Vecchia, G., … Nedbal, L. (2012). Engineered drought tolerance in tomato plants is reflected in chlorophyll fluorescence emission. Plant Science, 182, 79-86. doi:10.1016/j.plantsci.2011.03.022 es_ES
dc.description.references Monforte, A. J., & Tanksley, S. D. (2000). Development of a set of near isogenic and backcross recombinant inbred lines containing most of the Lycopersicon hirsutum genome in a L. esculentum genetic background: A tool for gene mapping and gene discovery. Genome, 43(5), 803-813. doi:10.1139/gen-43-5-803 es_ES
dc.description.references Monforte, A. J., Diaz, A., Caño-Delgado, A., & van der Knaap, E. (2013). The genetic basis of fruit morphology in horticultural crops: lessons from tomato and melon. Journal of Experimental Botany, 65(16), 4625-4637. doi:10.1093/jxb/eru017 es_ES
dc.description.references Monforte, A. J., Friedman, E., Zamir, D., & Tanksley, S. D. (2001). Comparison of a set of allelic QTL-NILs for chromosome 4 of tomato: Deductions about natural variation and implications for germplasm utilization. Theoretical and Applied Genetics, 102(4), 572-590. doi:10.1007/s001220051684 es_ES
dc.description.references Motion, G. B., Howden, A. J. M., Huitema, E., & Jones, S. (2015). DNA-binding protein prediction using plant specific support vector machines: validation and application of a new genome annotation tool. Nucleic Acids Research, 43(22), e158-e158. doi:10.1093/nar/gkv805 es_ES
dc.description.references Mounet, F., Moing, A., Kowalczyk, M., Rohrmann, J., Petit, J., Garcia, V., … Lemaire-Chamley, M. (2012). Down-regulation of a single auxin efflux transport protein in tomato induces precocious fruit development. Journal of Experimental Botany, 63(13), 4901-4917. doi:10.1093/jxb/ers167 es_ES
dc.description.references Nakano, H., Kobayashi, N., Takahata, K., Mine, Y., & Sugiyama, N. (2016). Quantitative trait loci analysis of the time of floral initiation in tomato. Scientia Horticulturae, 201, 199-210. doi:10.1016/j.scienta.2016.02.009 es_ES
dc.description.references Neuman, H., Galpaz, N., Cunningham, F. X., Zamir, D., & Hirschberg, J. (2014). The tomato mutationnxd1reveals a gene necessary for neoxanthin biosynthesis and demonstrates that violaxanthin is a sufficient precursor for abscisic acid biosynthesis. The Plant Journal, 78(1), 80-93. doi:10.1111/tpj.12451 es_ES
dc.description.references Nicolas, S. D., Péros, J.-P., Lacombe, T., Launay, A., Le Paslier, M.-C., Bérard, A., … Doligez, A. (2016). Genetic diversity, linkage disequilibrium and power of a large grapevine (Vitis vinifera L) diversity panel newly designed for association studies. BMC Plant Biology, 16(1). doi:10.1186/s12870-016-0754-z es_ES
dc.description.references Nishitani, C., Hirai, N., Komori, S., Wada, M., Okada, K., Osakabe, K., … Osakabe, Y. (2016). Efficient Genome Editing in Apple Using a CRISPR/Cas9 system. Scientific Reports, 6(1). doi:10.1038/srep31481 es_ES
dc.description.references Nunes-Nesi, A., Carrari, F., Lytovchenko, A., Smith, A. M. O., Ehlers Loureiro, M., Ratcliffe, R. G., … Fernie, A. R. (2005). Enhanced Photosynthetic Performance and Growth as a Consequence of Decreasing Mitochondrial Malate Dehydrogenase Activity in Transgenic Tomato Plants. Plant Physiology, 137(2), 611-622. doi:10.1104/pp.104.055566 es_ES
dc.description.references Orzaez, D., Monforte, A. J., & Granell, A. (2010). Using genetic variability available in the breeder’s pool to engineer fruit quality. GM Crops, 1(3), 120-127. doi:10.4161/gmcr.1.3.12327 es_ES
dc.description.references Oyanedel, E., Wolfe, D. W., Monforte, A. J., Tanksley, S. D., & Owens, T. G. (2001). USING LYCOPERSICON HIRSUTUM AS A SOURCE OF COLD TOLERANCE IN PROCESSING TOMATO BREEDING. Acta Horticulturae, (542), 387-391. doi:10.17660/actahortic.2001.542.51 es_ES
dc.description.references Pan, C., Ye, L., Qin, L., Liu, X., He, Y., Wang, J., … Lu, G. (2016). CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations. Scientific Reports, 6(1). doi:10.1038/srep24765 es_ES
dc.description.references Pankratov, I., McQuinn, R., Schwartz, J., Bar, E., Fei, Z., Lewinsohn, E., … Hirschberg, J. (2016). Fruit carotenoid-deficient mutants in tomato reveal a function of the plastidial isopentenyl diphosphate isomerase (IDI1) in carotenoid biosynthesis. The Plant Journal, 88(1), 82-94. doi:10.1111/tpj.13232 es_ES
dc.description.references Parker, J., Koh, J., Yoo, M.-J., Zhu, N., Feole, M., Yi, S., & Chen, S. (2013). Quantitative proteomics of tomato defense againstPseudomonas syringaeinfection. PROTEOMICS, 13(12-13), 1934-1946. doi:10.1002/pmic.201200402 es_ES
dc.description.references Pascual, L., Albert, E., Sauvage, C., Duangjit, J., Bouchet, J.-P., Bitton, F., … Causse, M. (2016). Dissecting quantitative trait variation in the resequencing era: complementarity of bi-parental, multi-parental and association panels. Plant Science, 242, 120-130. doi:10.1016/j.plantsci.2015.06.017 es_ES
dc.description.references Pascual, L., Desplat, N., Huang, B. E., Desgroux, A., Bruguier, L., Bouchet, J.-P., … Causse, M. (2014). Potential of a tomato MAGIC population to decipher the genetic control of quantitative traits and detect causal variants in the resequencing era. Plant Biotechnology Journal, 13(4), 565-577. doi:10.1111/pbi.12282 es_ES
dc.description.references Pérez-Díaz, R., Madrid-Espinoza, J., Salinas-Cornejo, J., González-Villanueva, E., & Ruiz-Lara, S. (2016). Differential Roles for VviGST1, VviGST3, and VviGST4 in Proanthocyanidin and Anthocyanin Transport in Vitis vinífera. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.01166 es_ES
dc.description.references Prada, D. (2009). Molecular population genetics and agronomic alleles in seed banks: searching for a needle in a haystack? Journal of Experimental Botany, 60(9), 2541-2552. doi:10.1093/jxb/erp130 es_ES
dc.description.references Prashar, A., & Jones, H. (2014). Infra-Red Thermography as a High-Throughput Tool for Field Phenotyping. Agronomy, 4(3), 397-417. doi:10.3390/agronomy4030397 es_ES
dc.description.references Quadrana, L., Almeida, J., Asís, R., Duffy, T., Dominguez, P. G., Bermúdez, L., … Carrari, F. (2014). Natural occurring epialleles determine vitamin E accumulation in tomato fruits. Nature Communications, 5(1). doi:10.1038/ncomms5027 es_ES
dc.description.references Rambla, J. L., Trapero-Mozos, A., Diretto, G., Rubio-Moraga, A., Granell, A., Gómez-Gómez, L., & Ahrazem, O. (2016). Gene-Metabolite Networks of Volatile Metabolism in Airen and Tempranillo Grape Cultivars Revealed a Distinct Mechanism of Aroma Bouquet Production. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.01619 es_ES
dc.description.references Rambla, J. L., Medina, A., Fernández-del-Carmen, A., Barrantes, W., Grandillo, S., Cammareri, M., … Granell, A. (2016). Identification, introgression, and validation of fruit volatile QTLs from a red-fruited wild tomato species. Journal of Experimental Botany, erw455. doi:10.1093/jxb/erw455 es_ES
dc.description.references Raza, S.-A., Prince, G., Clarkson, J. P., & Rajpoot, N. M. (2015). Automatic Detection of Diseased Tomato Plants Using Thermal and Stereo Visible Light Images. PLOS ONE, 10(4), e0123262. doi:10.1371/journal.pone.0123262 es_ES
dc.description.references Reganold, J. P., & Wachter, J. M. (2016). Organic agriculture in the twenty-first century. Nature Plants, 2(2). doi:10.1038/nplants.2015.221 es_ES
dc.description.references Ren, C., Liu, X., Zhang, Z., Wang, Y., Duan, W., Li, S., & Liang, Z. (2016). CRISPR/Cas9-mediated efficient targeted mutagenesis in Chardonnay (Vitis vinifera L.). Scientific Reports, 6(1). doi:10.1038/srep32289 es_ES
dc.description.references Riaz, S., Krivanek, A. F., Xu, K., & Walker, M. A. (2006). Refined mapping of the Pierce’s disease resistance locus, PdR1, and Sex on an extended genetic map of Vitis rupestris × V. arizonica. Theoretical and Applied Genetics, 113(7), 1317-1329. doi:10.1007/s00122-006-0385-0 es_ES
dc.description.references Riaz, S., Tenscher, A. C., Ramming, D. W., & Walker, M. A. (2010). Using a limited mapping strategy to identify major QTLs for resistance to grapevine powdery mildew (Erysiphe necator) and their use in marker-assisted breeding. Theoretical and Applied Genetics, 122(6), 1059-1073. doi:10.1007/s00122-010-1511-6 es_ES
dc.description.references Rinaldo, A., Cavallini, E., Jia, Y., Moss, S. M. A., McDavid, D. A. J., Hooper, L. C., … Walker, A. R. (2015). A grapevine anthocyanin acyltransferase, transcriptionally regulated by VvMYBA, can produce most acylated anthocyanins present in grape skins. Plant Physiology, pp.01255.2015. doi:10.1104/pp.15.01255 es_ES
dc.description.references Roby, J.-P., Leeuwen, C. van, Gonçalves, E., Graça, A., & Martins, A. (2014). The preservation of genetic resources of the vine requires cohabitation between institutional clonal selection, mass selection and private clonal selection. BIO Web of Conferences, 3, 01018. doi:10.1051/bioconf/20140301018 es_ES
dc.description.references Römer, S., Fraser, P. D., Kiano, J. W., Shipton, C. A., Misawa, N., Schuch, W., & Bramley, P. M. (2000). Elevation of the provitamin A content of transgenic tomato plants. Nature Biotechnology, 18(6), 666-669. doi:10.1038/76523 es_ES
dc.description.references Ron, M., Kajala, K., Pauluzzi, G., Wang, D., Reynoso, M. A., Zumstein, K., … Brady, S. M. (2014). Hairy Root Transformation Using Agrobacterium rhizogenes as a Tool for Exploring Cell Type-Specific Gene Expression and Function Using Tomato as a Model. PLANT PHYSIOLOGY, 166(2), 455-469. doi:10.1104/pp.114.239392 es_ES
dc.description.references Ronen, G., Carmel-Goren, L., Zamir, D., & Hirschberg, J. (2000). An alternative pathway to beta -carotene formation in plant chromoplasts discovered by map-based cloning of Beta and old-gold color mutations in tomato. Proceedings of the National Academy of Sciences, 97(20), 11102-11107. doi:10.1073/pnas.190177497 es_ES
dc.description.references Rosati, C., Aquilani, R., Dharmapuri, S., Pallara, P., Marusic, C., Tavazza, R., … Giuliano, G. (2000). Metabolic engineering of beta-carotene and lycopene content in tomato fruit. The Plant Journal, 24(3), 413-420. doi:10.1046/j.1365-313x.2000.00880.x es_ES
dc.description.references Rosenberg, N. A., Huang, L., Jewett, E. M., Szpiech, Z. A., Jankovic, I., & Boehnke, M. (2010). Genome-wide association studies in diverse populations. Nature Reviews Genetics, 11(5), 356-366. doi:10.1038/nrg2760 es_ES
dc.description.references Rousseau, D., Chéné, Y., Belin, E., Semaan, G., Trigui, G., Boudehri, K., … Chapeau-Blondeau, F. (2015). Multiscale imaging of plants: current approaches and challenges. Plant Methods, 11(1), 6. doi:10.1186/s13007-015-0050-1 es_ES
dc.description.references Rousseaux, M. C., Jones, C. M., Adams, D., Chetelat, R., Bennett, A., & Powell, A. (2005). QTL analysis of fruit antioxidants in tomato using Lycopersicon pennellii introgression lines. Theoretical and Applied Genetics, 111(7), 1396-1408. doi:10.1007/s00122-005-0071-7 es_ES
dc.description.references Ruggieri, V., Francese, G., Sacco, A., D’Alessandro, A., Rigano, M. M., Parisi, M., … Barone, A. (2014). An association mapping approach to identify favourable alleles for tomato fruit quality breeding. BMC Plant Biology, 14(1). doi:10.1186/s12870-014-0337-9 es_ES
dc.description.references Sagi, M., Scazzocchio, C., & Fluhr, R. (2002). The absence of molybdenum cofactor sulfuration is the primary cause of the flacca phenotype in tomato plants. The Plant Journal, 31(3), 305-317. doi:10.1046/j.1365-313x.2002.01363.x es_ES
dc.description.references Saito, T., Ariizumi, T., Okabe, Y., Asamizu, E., Hiwasa-Tanase, K., Fukuda, N., … Ezura, H. (2011). TOMATOMA: A Novel Tomato Mutant Database Distributing Micro-Tom Mutant Collections. Plant and Cell Physiology, 52(2), 283-296. doi:10.1093/pcp/pcr004 es_ES
dc.description.references Saliba-Colombani, V., Causse, M., Langlois, D., Philouze, J., & Buret, M. (2001). Genetic analysis of organoleptic quality in fresh market tomato. 1. Mapping QTLs for physical and chemical traits. Theoretical and Applied Genetics, 102(2-3), 259-272. doi:10.1007/s001220051643 es_ES
dc.description.references Sankaran, S., Khot, L. R., Espinoza, C. Z., Jarolmasjed, S., Sathuvalli, V. R., Vandemark, G. J., … Pavek, M. J. (2015). Low-altitude, high-resolution aerial imaging systems for row and field crop phenotyping: A review. European Journal of Agronomy, 70, 112-123. doi:10.1016/j.eja.2015.07.004 es_ES
dc.description.references Sanz, R., Rosell, J. R., Llorens, J., Gil, E., & Planas, S. (2013). Relationship between tree row LIDAR-volume and leaf area density for fruit orchards and vineyards obtained with a LIDAR 3D Dynamic Measurement System. Agricultural and Forest Meteorology, 171-172, 153-162. doi:10.1016/j.agrformet.2012.11.013 es_ES
dc.description.references Sarrion-Perdigones, A., Falconi, E. E., Zandalinas, S. I., Juárez, P., Fernández-del-Carmen, A., Granell, A., & Orzaez, D. (2011). GoldenBraid: An Iterative Cloning System for Standardized Assembly of Reusable Genetic Modules. PLoS ONE, 6(7), e21622. doi:10.1371/journal.pone.0021622 es_ES
dc.description.references Sarrion-Perdigones, A., Vazquez-Vilar, M., Palaci, J., Castelijns, B., Forment, J., Ziarsolo, P., … Orzaez, D. (2013). GoldenBraid 2.0: A Comprehensive DNA Assembly Framework for Plant Synthetic Biology. PLANT PHYSIOLOGY, 162(3), 1618-1631. doi:10.1104/pp.113.217661 es_ES
dc.description.references (2012). The tomato genome sequence provides insights into fleshy fruit evolution. Nature, 485(7400), 635-641. doi:10.1038/nature11119 es_ES
dc.description.references Schaart, J. G., van de Wiel, C. C. M., Lotz, L. A. P., & Smulders, M. J. M. (2016). Opportunities for Products of New Plant Breeding Techniques. Trends in Plant Science, 21(5), 438-449. doi:10.1016/j.tplants.2015.11.006 es_ES
dc.description.references Schauer, N., Semel, Y., Balbo, I., Steinfath, M., Repsilber, D., Selbig, J., … Fernie, A. R. (2008). Mode of Inheritance of Primary Metabolic Traits in Tomato. The Plant Cell, 20(3), 509-523. doi:10.1105/tpc.107.056523 es_ES
dc.description.references Schauer, N., Semel, Y., Roessner, U., Gur, A., Balbo, I., Carrari, F., … Fernie, A. R. (2006). Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nature Biotechnology, 24(4), 447-454. doi:10.1038/nbt1192 es_ES
dc.description.references Schauer, N. (2004). Metabolic profiling of leaves and fruit of wild species tomato: a survey of the Solanum lycopersicum complex. Journal of Experimental Botany, 56(410), 297-307. doi:10.1093/jxb/eri057 es_ES
dc.description.references Schijlen, E., Ric de Vos, C. H., Jonker, H., van den Broeck, H., Molthoff, J., van Tunen, A., … Bovy, A. (2006). Pathway engineering for healthy phytochemicals leading to the production of novel flavonoids in tomato fruit. Plant Biotechnology Journal, 4(4), 433-444. doi:10.1111/j.1467-7652.2006.00192.x es_ES
dc.description.references Schreiber, G., Reuveni, M., Evenor, D., Oren-Shamir, M., Ovadia, R., Sapir-Mir, M., … Levin, I. (2011). ANTHOCYANIN1 from Solanum chilense is more efficient in accumulating anthocyanin metabolites than its Solanum lycopersicum counterpart in association with the ANTHOCYANIN FRUIT phenotype of tomato. Theoretical and Applied Genetics, 124(2), 295-307. doi:10.1007/s00122-011-1705-6 es_ES
dc.description.references Shah, P., Powell, A. L. T., Orlando, R., Bergmann, C., & Gutierrez-Sanchez, G. (2012). Proteomic Analysis of Ripening Tomato Fruit Infected byBotrytis cinerea. Journal of Proteome Research, 11(4), 2178-2192. doi:10.1021/pr200965c es_ES
dc.description.references Hsu, P. D., Scott, D. A., Weinstein, J. A., Ran, F. A., Konermann, S., Agarwala, V., … Zhang, F. (2013). DNA targeting specificity of RNA-guided Cas9 nucleases. Nature Biotechnology, 31(9), 827-832. doi:10.1038/nbt.2647 es_ES
dc.description.references Shen, J., Tieman, D., Jones, J. B., Taylor, M. G., Schmelz, E., Huffaker, A., … Klee, H. J. (2014). A 13-lipoxygenase, TomloxC, is essential for synthesis of C5 flavour volatiles in tomato. Journal of Experimental Botany, 65(2), 419-428. doi:10.1093/jxb/ert382 es_ES
dc.description.references Shikata, M., Hoshikawa, K., Ariizumi, T., Fukuda, N., Yamazaki, Y., & Ezura, H. (2015). TOMATOMA Update: Phenotypic and Metabolite Information in the Micro-Tom Mutant Resource. Plant and Cell Physiology, 57(1), e11-e11. doi:10.1093/pcp/pcv194 es_ES
dc.description.references Sim, S.-C., Durstewitz, G., Plieske, J., Wieseke, R., Ganal, M. W., Van Deynze, A., … Francis, D. M. (2012). Development of a Large SNP Genotyping Array and Generation of High-Density Genetic Maps in Tomato. PLoS ONE, 7(7), e40563. doi:10.1371/journal.pone.0040563 es_ES
dc.description.references Simkin, A. J., Schwartz, S. H., Auldridge, M., Taylor, M. G., & Klee, H. J. (2004). The tomato carotenoid cleavage dioxygenase 1 genes contribute to the formation of the flavor volatiles β-ionone, pseudoionone, and geranylacetone. The Plant Journal, 40(6), 882-892. doi:10.1111/j.1365-313x.2004.02263.x es_ES
dc.description.references Speirs, J., Lee, E., Holt, K., Yong-Duk, K., Steele Scott, N., Loveys, B., & Schuch, W. (1998). Genetic Manipulation of Alcohol Dehydrogenase Levels in Ripening Tomato Fruit Affects the Balance of Some Flavor Aldehydes and Alcohols. Plant Physiology, 117(3), 1047-1058. doi:10.1104/pp.117.3.1047 es_ES
dc.description.references Sprink, T., Metje, J., & Hartung, F. (2015). Plant genome editing by novel tools: TALEN and other sequence specific nucleases. Current Opinion in Biotechnology, 32, 47-53. doi:10.1016/j.copbio.2014.11.010 es_ES
dc.description.references Steiber, A., Hegazi, R., Herrera, M., Landy Zamor, M., Chimanya, K., Pekcan, A. G., … Ojwang, A. A. (2015). Spotlight on Global Malnutrition: A Continuing Challenge in the 21st Century. Journal of the Academy of Nutrition and Dietetics, 115(8), 1335-1341. doi:10.1016/j.jand.2015.05.015 es_ES
dc.description.references Sun, Y. D., Liang, Y., Wu, J. M., Li, Y. Z., Cui, X., & Qin, L. (2012). Dynamic QTL analysis for fruit lycopene content and total soluble solid content in a Solanum lycopersicum x S. pimpinellifolium cross. Genetics and Molecular Research, 11(4), 3696-3710. doi:10.4238/2012.august.17.8 es_ES
dc.description.references Tadmor, Y., Fridman, E., Gur, A., Larkov, O., Lastochkin, E., Ravid, U., … Lewinsohn, E. (2002). Identification ofmalodorous, a Wild Species Allele Affecting Tomato Aroma That Was Selected against during Domestication. Journal of Agricultural and Food Chemistry, 50(7), 2005-2009. doi:10.1021/jf011237x es_ES
dc.description.references Tang, H., Sezen, U., & Paterson, A. H. (2010). Domestication and plant genomes. Current Opinion in Plant Biology, 13(2), 160-166. doi:10.1016/j.pbi.2009.10.008 es_ES
dc.description.references Tanksley, S. D., Grandillo, S., Fulton, T. M., Zamir, D., Eshed, Y., Petiard, V., … Beck-Bunn, T. (1996). Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pimpinellifolium. Theoretical and Applied Genetics, 92(2), 213-224. doi:10.1007/bf00223378 es_ES
dc.description.references Tanou, G., Job, C., Rajjou, L., Arc, E., Belghazi, M., Diamantidis, G., … Job, D. (2009). Proteomics reveals the overlapping roles of hydrogen peroxide and nitric oxide in the acclimation of citrus plants to salinity. The Plant Journal, 60(5), 795-804. doi:10.1111/j.1365-313x.2009.04000.x es_ES
dc.description.references Temple, L., Kwa, M., Tetang, J., & Bikoi, A. (2011). Organizational determinant of technological innovation in food agriculture and impacts on sustainable development. Agronomy for Sustainable Development, 31(4), 745-755. doi:10.1007/s13593-011-0017-1 es_ES
dc.description.references Thapa, S. P., Miyao, E. M., Michael Davis, R., & Coaker, G. (2015). Identification of QTLs controlling resistance to Pseudomonas syringae pv. tomato race 1 strains from the wild tomato, Solanum habrochaites LA1777. Theoretical and Applied Genetics, 128(4), 681-692. doi:10.1007/s00122-015-2463-7 es_ES
dc.description.references THIS, P., LACOMBE, T., & THOMAS, M. (2006). Historical origins and genetic diversity of wine grapes. Trends in Genetics, 22(9), 511-519. doi:10.1016/j.tig.2006.07.008 es_ES
dc.description.references Tieman, D. M., Zeigler, M., Schmelz, E. A., Taylor, M. G., Bliss, P., Kirst, M., & Klee, H. J. (2006). Identification of loci affecting flavour volatile emissions in tomato fruits. Journal of Experimental Botany, 57(4), 887-896. doi:10.1093/jxb/erj074 es_ES
dc.description.references Tieman, D., Zeigler, M., Schmelz, E., Taylor, M. G., Rushing, S., Jones, J. B., & Klee, H. J. (2010). Functional analysis of a tomato salicylic acid methyl transferase and its role in synthesis of the flavor volatile methyl salicylate. The Plant Journal, 62(1), 113-123. doi:10.1111/j.1365-313x.2010.04128.x es_ES
dc.description.references Tikunov, Y. M., Molthoff, J., de Vos, R. C. H., Beekwilder, J., van Houwelingen, A., van der Hooft, J. J. J., … Bovy, A. G. (2013). NON-SMOKY GLYCOSYLTRANSFERASE1 Prevents the Release of Smoky Aroma from Tomato Fruit. The Plant Cell, 25(8), 3067-3078. doi:10.1105/tpc.113.114231 es_ES
dc.description.references Tilman, D., & Clark, M. (2015). Food, Agriculture & the Environment: Can We Feed the World & Save the Earth? Daedalus, 144(4), 8-23. doi:10.1162/daed_a_00350 es_ES
dc.description.references Truco, M. J., Randall, L. B., Bloom, A. J., & St. Clair, D. A. (2000). Detection of QTLs associated with shoot wilting and root ammonium uptake under chilling temperatures in an interspecific backcross population from Lycopersicon esculentum ×L. hirsutum. Theoretical and Applied Genetics, 101(7), 1082-1092. doi:10.1007/s001220051583 es_ES
dc.description.references Uluisik, S., Chapman, N. H., Smith, R., Poole, M., Adams, G., Gillis, R. B., … Seymour, G. B. (2016). Genetic improvement of tomato by targeted control of fruit softening. Nature Biotechnology, 34(9), 950-952. doi:10.1038/nbt.3602 es_ES
dc.description.references Vadivambal, R., & Jayas, D. S. (2010). Applications of Thermal Imaging in Agriculture and Food Industry—A Review. Food and Bioprocess Technology, 4(2), 186-199. doi:10.1007/s11947-010-0333-5 es_ES
dc.description.references Van der Knaap, E., Lippman, Z. B., & Tanksley, S. D. (2002). Extremely elongated tomato fruit controlled by four quantitative trait loci with epistatic interactions. Theoretical and Applied Genetics, 104(2), 241-247. doi:10.1007/s00122-001-0776-1 es_ES
dc.description.references Varshney, R. K., Terauchi, R., & McCouch, S. R. (2014). Harvesting the Promising Fruits of Genomics: Applying Genome Sequencing Technologies to Crop Breeding. PLoS Biology, 12(6), e1001883. doi:10.1371/journal.pbio.1001883 es_ES
dc.description.references Vazquez-Vilar, M., Bernabé-Orts, J. M., Fernandez-del-Carmen, A., Ziarsolo, P., Blanca, J., Granell, A., & Orzaez, D. (2016). A modular toolbox for gRNA–Cas9 genome engineering in plants based on the GoldenBraid standard. Plant Methods, 12(1). doi:10.1186/s13007-016-0101-2 es_ES
dc.description.references Velasco, R., Zharkikh, A., Troggio, M., Cartwright, D. A., Cestaro, A., Pruss, D., … Reid, J. (2007). A High Quality Draft Consensus Sequence of the Genome of a Heterozygous Grapevine Variety. PLoS ONE, 2(12), e1326. doi:10.1371/journal.pone.0001326 es_ES
dc.description.references Víquez-Zamora, M., Caro, M., Finkers, R., Tikunov, Y., Bovy, A., Visser, R. G., … van Heusden, S. (2014). Mapping in the era of sequencing: high density genotyping and its application for mapping TYLCV resistance in Solanum pimpinellifolium. BMC Genomics, 15(1), 1152. doi:10.1186/1471-2164-15-1152 es_ES
dc.description.references Vogel, J. T., Walter, M. H., Giavalisco, P., Lytovchenko, A., Kohlen, W., Charnikhova, T., … Klee, H. J. (2009). SlCCD7 controls strigolactone biosynthesis, shoot branching and mycorrhiza-induced apocarotenoid formation in tomato. The Plant Journal, 61(2), 300-311. doi:10.1111/j.1365-313x.2009.04056.x es_ES
dc.description.references Walker, A. R., Lee, E., Bogs, J., McDavid, D. A. J., Thomas, M. R., & Robinson, S. P. (2007). White grapes arose through the mutation of two similar and adjacent regulatory genes. The Plant Journal, 49(5), 772-785. doi:10.1111/j.1365-313x.2006.02997.x es_ES
dc.description.references Wang, Y., Liu, X., Ren, C., Zhong, G.-Y., Yang, L., Li, S., & Liang, Z. (2016). Identification of genomic sites for CRISPR/Cas9-based genome editing in the Vitis vinifera genome. BMC Plant Biology, 16(1). doi:10.1186/s12870-016-0787-3 es_ES
dc.description.references Wasson, A. P., Richards, R. A., Chatrath, R., Misra, S. C., Prasad, S. V. S., Rebetzke, G. J., … Watt, M. (2012). Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops. Journal of Experimental Botany, 63(9), 3485-3498. doi:10.1093/jxb/ers111 es_ES
dc.description.references Westengen, O. T., Jeppson, S., & Guarino, L. (2013). Global Ex-Situ Crop Diversity Conservation and the Svalbard Global Seed Vault: Assessing the Current Status. PLoS ONE, 8(5), e64146. doi:10.1371/journal.pone.0064146 es_ES
dc.description.references Wezel, A., Bellon, S., Doré, T., Francis, C., Vallod, D., & David, C. (2011). Agroecology as a Science, a Movement and a Practice. Sustainable Agriculture Volume 2, 27-43. doi:10.1007/978-94-007-0394-0_3 es_ES
dc.description.references Wezel, A., Casagrande, M., Celette, F., Vian, J.-F., Ferrer, A., & Peigné, J. (2013). Agroecological practices for sustainable agriculture. A review. Agronomy for Sustainable Development, 34(1), 1-20. doi:10.1007/s13593-013-0180-7 es_ES
dc.description.references Xu, K., Riaz, S., Roncoroni, N. C., Jin, Y., Hu, R., Zhou, R., & Walker, M. A. (2007). Genetic and QTL analysis of resistance to Xiphinema index in a grapevine cross. Theoretical and Applied Genetics, 116(2), 305-311. doi:10.1007/s00122-007-0670-6 es_ES
dc.description.references Xu, X., & Bai, G. (2015). Whole-genome resequencing: changing the paradigms of SNP detection, molecular mapping and gene discovery. Molecular Breeding, 35(1). doi:10.1007/s11032-015-0240-6 es_ES
dc.description.references Xu, C., Park, S. J., Van Eck, J., & Lippman, Z. B. (2016). Control of inflorescence architecture in tomato by BTB/POZ transcriptional regulators. Genes & Development, 30(18), 2048-2061. doi:10.1101/gad.288415.116 es_ES
dc.description.references Yang, H., Li, C., Lam, H.-M., Clements, J., Yan, G., & Zhao, S. (2015). Sequencing consolidates molecular markers with plant breeding practice. Theoretical and Applied Genetics, 128(5), 779-795. doi:10.1007/s00122-015-2499-8 es_ES
dc.description.references Yin, Y.-G., Kobayashi, Y., Sanuki, A., Kondo, S., Fukuda, N., Ezura, H., … Matsukura, C. (2009). Salinity induces carbohydrate accumulation and sugar-regulated starch biosynthetic genes in tomato (Solanum lycopersicum L. cv. ‘Micro-Tom’) fruits in an ABA- and osmotic stress-independent manner. Journal of Experimental Botany, 61(2), 563-574. doi:10.1093/jxb/erp333 es_ES
dc.description.references Zanor, M. I., Rambla, J.-L., Chaïb, J., Steppa, A., Medina, A., Granell, A., … Causse, M. (2009). Metabolic characterization of loci affecting sensory attributes in tomato allows an assessment of the influence of the levels of primary metabolites and volatile organic contents. Journal of Experimental Botany, 60(7), 2139-2154. doi:10.1093/jxb/erp086 es_ES
dc.description.references Zhang, J., Zhao, J., Xu, Y., Liang, J., Chang, P., Yan, F., … Zou, Z. (2015). Genome-Wide Association Mapping for Tomato Volatiles Positively Contributing to Tomato Flavor. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.01042 es_ES
dc.description.references Zhang, Y., Butelli, E., De Stefano, R., Schoonbeek, H., Magusin, A., Pagliarani, C., … Martin, C. (2013). Anthocyanins Double the Shelf Life of Tomatoes by Delaying Overripening and Reducing Susceptibility to Gray Mold. Current Biology, 23(12), 1094-1100. doi:10.1016/j.cub.2013.04.072 es_ES
dc.description.references Zhao, Q., Zhang, H., Wang, T., Chen, S., & Dai, S. (2013). Proteomics-based investigation of salt-responsive mechanisms in plant roots. Journal of Proteomics, 82, 230-253. doi:10.1016/j.jprot.2013.01.024 es_ES
dc.description.references Zhong, S., Fei, Z., Chen, Y.-R., Zheng, Y., Huang, M., Vrebalov, J., … Giovannoni, J. J. (2013). Single-base resolution methylomes of tomato fruit development reveal epigenome modifications associated with ripening. Nature Biotechnology, 31(2), 154-159. doi:10.1038/nbt.2462 es_ES
dc.description.references Zhu, C., Gore, M., Buckler, E. S., & Yu, J. (2008). Status and Prospects of Association Mapping in Plants. The Plant Genome, 1(1), 5-20. doi:10.3835/plantgenome2008.02.0089 es_ES
dc.description.references Zyprian, E., Ochßner, I., Schwander, F., Šimon, S., Hausmann, L., Bonow-Rex, M., … Töpfer, R. (2016). Quantitative trait loci affecting pathogen resistance and ripening of grapevines. Molecular Genetics and Genomics, 291(4), 1573-1594. doi:10.1007/s00438-016-1200-5 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem