- -

QTL Analyses in Multiple Populations Employed for the Fine Mapping and Identification of Candidate Genes at a Locus Affecting Sugar Accumulation in Melon (Cucumis melo L.)

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

QTL Analyses in Multiple Populations Employed for the Fine Mapping and Identification of Candidate Genes at a Locus Affecting Sugar Accumulation in Melon (Cucumis melo L.)

Show full item record

Argirys, J.; Diaz, A.; Ruggieri, V.; Fernandez, M.; Jahrmann, T.; Gibon, Y.; Picó Sirvent, MB.... (2017). QTL Analyses in Multiple Populations Employed for the Fine Mapping and Identification of Candidate Genes at a Locus Affecting Sugar Accumulation in Melon (Cucumis melo L.). Frontiers in Plant Science. 8:1-20. https://doi.org/10.3389/fpls.2017.01679

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/148905

Files in this item

Item Metadata

Title: QTL Analyses in Multiple Populations Employed for the Fine Mapping and Identification of Candidate Genes at a Locus Affecting Sugar Accumulation in Melon (Cucumis melo L.)
Author: ARGIRYS, J.M. DIAZ, A. Ruggieri, V. FERNANDEZ, M. Jahrmann, T. GIBON, Y. Picó Sirvent, María Belén Martín-Hernández, A.M. MONFORTE, A.J. GARCIA-MAS, J.
UPV Unit: Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Issued date:
Abstract:
[EN] Sugar content is the major determinant of both fruit quality and consumer acceptance in melon (Cucumis melo L), and is a primary target for crop improvement. Nearisogenic lines (NILs) derived from the intraspecific ...[+]
Subjects: QTL , Melon , Sugar , Sucrose , NILs , Fine-mapping , Candidate genes , BEL1-like
Copyrigths: Reconocimiento (by)
Source:
Frontiers in Plant Science. (eissn: 1664-462X )
DOI: 10.3389/fpls.2017.01679
Publisher:
Frontiers Media SA
Publisher version: https://doi.org/10.3389/fpls.2017.01679
Project ID:
info:eu-repo/grantAgreement/MINECO//AGL2015-64625-C2-1-R/ES/DISECCION GENETICA DE DOS CARACTERES DE INTERES AGRONOMICO EN MELON: RESISTENCIA A CUCUMBER MOSAIC VIRUS Y MADURACION CLIMATERICA DE FRUTO./
info:eu-repo/grantAgreement/MINECO//AGL2015-64625-C2-1-R/ES/DISECCION GENETICA DE DOS CARACTERES DE INTERES AGRONOMICO EN MELON: RESISTENCIA A CUCUMBER MOSAIC VIRUS Y MADURACION CLIMATERICA DE FRUTO/
info:eu-repo/grantAgreement/MICINN//PIM2010PKB-00691/ES/SUGARS AND FRUIT QUALITY IN MELON/
info:eu-repo/grantAgreement/MINECO//AGL2015-64625-C2-2-R/ES/EVOLUCION Y DIVERSIFICACION EN CUCUMIS. GENETICA DE LA DOMESTICACION, MORFOLOGIA DE FRUTO Y BARRERAS REPRODUCTIVAS/
Thanks:
This work was supported by the Spanish Ministry of Economy and Competitivity grants AGL2015-64625-C2-1-R and PIM2010PKB-00691, Centro de Excelencia Severo Ochoa 2016-2020 and the CERCA Programme/Generalitat de Catalunya ...[+]
Type: Artículo

References

Argyris, J. M., Pujol, M., Martín-Hernández, A. M., & Garcia-Mas, J. (2015). Combined use of genetic and genomics resources to understand virus resistance and fruit quality traits in melon. Physiologia Plantarum, 155(1), 4-11. doi:10.1111/ppl.12323

Argyris, J. M., Ruiz-Herrera, A., Madriz-Masis, P., Sanseverino, W., Morata, J., Pujol, M., … Garcia-Mas, J. (2015). Use of targeted SNP selection for an improved anchoring of the melon (Cucumis melo L.) scaffold genome assembly. BMC Genomics, 16(1), 4. doi:10.1186/s12864-014-1196-3

Ariizumi, T., Higuchi, K., Arakaki, S., Sano, T., Asamizu, E., & Ezura, H. (2011). Genetic suppression analysis in novel vacuolar processing enzymes reveals their roles in controlling sugar accumulation in tomato fruits. Journal of Experimental Botany, 62(8), 2773-2786. doi:10.1093/jxb/erq451 [+]
Argyris, J. M., Pujol, M., Martín-Hernández, A. M., & Garcia-Mas, J. (2015). Combined use of genetic and genomics resources to understand virus resistance and fruit quality traits in melon. Physiologia Plantarum, 155(1), 4-11. doi:10.1111/ppl.12323

Argyris, J. M., Ruiz-Herrera, A., Madriz-Masis, P., Sanseverino, W., Morata, J., Pujol, M., … Garcia-Mas, J. (2015). Use of targeted SNP selection for an improved anchoring of the melon (Cucumis melo L.) scaffold genome assembly. BMC Genomics, 16(1), 4. doi:10.1186/s12864-014-1196-3

Ariizumi, T., Higuchi, K., Arakaki, S., Sano, T., Asamizu, E., & Ezura, H. (2011). Genetic suppression analysis in novel vacuolar processing enzymes reveals their roles in controlling sugar accumulation in tomato fruits. Journal of Experimental Botany, 62(8), 2773-2786. doi:10.1093/jxb/erq451

Bartley, G. E., & Ishida, B. K. (2003). BMC Plant Biology, 3(1), 4. doi:10.1186/1471-2229-3-4

Beaulieu, J. C., Lea, J. M., Eggleston, G., & Peralta-Inga, Z. (2003). Sugar and Organic Acid Variations in Commercial Cantaloupes and Their Inbred Parents. Journal of the American Society for Horticultural Science, 128(4), 531-536. doi:10.21273/jashs.128.4.0531

Bencivenga, S., Simonini, S., Benková, E., & Colombo, L. (2012). The Transcription Factors BEL1 and SPL Are Required for Cytokinin and Auxin Signaling During Ovule Development in Arabidopsis. The Plant Cell, 24(7), 2886-2897. doi:10.1105/tpc.112.100164

Bermúdez, L., Urias, U., Milstein, D., Kamenetzky, L., Asis, R., Fernie, A. R., … Rossi, M. (2008). A candidate gene survey of quantitative trait loci affecting chemical composition in tomato fruit. Journal of Experimental Botany, 59(10), 2875-2890. doi:10.1093/jxb/ern146

Brenner, W. G., Ramireddy, E., Heyl, A., & Schmülling, T. (2012). Gene Regulation by Cytokinin in Arabidopsis. Frontiers in Plant Science, 3. doi:10.3389/fpls.2012.00008

Burger, Y., Sa’ar, U., Distelfeld, A., Katzir, N., Yeselson, Y., Shen, S., & Schaffer, A. A. (2003). Development of Sweet Melon (Cucumis melo) Genotypes Combining High Sucrose and Organic Acid Content. Journal of the American Society for Horticultural Science, 128(4), 537-540. doi:10.21273/jashs.128.4.0537

Burger, Y., & Schaffer, A. A. (2007). The Contribution of Sucrose Metabolism Enzymes to Sucrose Accumulation in Cucumis melo. Journal of the American Society for Horticultural Science, 132(5), 704-712. doi:10.21273/jashs.132.5.704

Burglin, T. R. (1997). Analysis of TALE superclass homeobox genes (MEIS, PBC, KNOX, Iroquois, TGIF) reveals a novel domain conserved between plants and animals. Nucleic Acids Research, 25(21), 4173-4180. doi:10.1093/nar/25.21.4173

Castro, G. E., Perpiñá, G., Esteras, C., Monforte, A. J., & Picó, M. B. (2017). A new introgression line collection to improve ‘Piel de Sapo’ melons. Acta Horticulturae, (1151), 81-86. doi:10.17660/actahortic.2017.1151.14

Chen, H., Banerjee, A. K., & Hannapel, D. J. (2004). The tandem complex of BEL and KNOX partners is required for transcriptional repression ofga20ox1. The Plant Journal, 38(2), 276-284. doi:10.1111/j.1365-313x.2004.02048.x

Chen, H., Rosin, F. M., Prat, S., & Hannapel, D. J. (2003). Interacting Transcription Factors from the Three-Amino Acid Loop Extension Superclass Regulate Tuber Formation. Plant Physiology, 132(3), 1391-1404. doi:10.1104/pp.103.022434

Cingolani, P., Platts, A., Wang, L. L., Coon, M., Nguyen, T., Wang, L., … Ruden, D. M. (2012). A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly, 6(2), 80-92. doi:10.4161/fly.19695

Cohen, S., Itkin, M., Yeselson, Y., Tzuri, G., Portnoy, V., Harel-Baja, R., … Schaffer, A. A. (2014). The PH gene determines fruit acidity and contributes to the evolution of sweet melons. Nature Communications, 5(1). doi:10.1038/ncomms5026

Dai, N., Cohen, S., Portnoy, V., Tzuri, G., Harel-Beja, R., Pompan-Lotan, M., … Schaffer, A. A. (2011). Metabolism of soluble sugars in developing melon fruit: a global transcriptional view of the metabolic transition to sucrose accumulation. Plant Molecular Biology, 76(1-2), 1-18. doi:10.1007/s11103-011-9757-1

Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., … DePristo, M. A. (2011). The variant call format and VCFtools. Bioinformatics, 27(15), 2156-2158. doi:10.1093/bioinformatics/btr330

Del Amor, F. M., Martinez, V., & Cerdá, A. (1999). Salinity Duration and Concentration Affect Fruit Yield and Quality, and Growth and Mineral Composition of Melon Plants Grown in Perlite. HortScience, 34(7), 1234-1237. doi:10.21273/hortsci.34.7.1234

Diaz, A., Fergany, M., Formisano, G., Ziarsolo, P., Blanca, J., Fei, Z., … Monforte, A. J. (2011). A consensus linkage map for molecular markers and Quantitative Trait Loci associated with economically important traits in melon (Cucumis melo L.). BMC Plant Biology, 11(1), 111. doi:10.1186/1471-2229-11-111

Diaz, A., Forment, J., Argyris, J. M., Fukino, N., Tzuri, G., Harel-Beja, R., … Monforte, A. J. (2015). Anchoring the consensus ICuGI genetic map to the melon (Cucumis melo L.) genome. Molecular Breeding, 35(10). doi:10.1007/s11032-015-0381-7

Díaz, A., Martín-Hernández, A. M., Dolcet-Sanjuan, R., Garcés-Claver, A., Álvarez, J. M., Garcia-Mas, J., … Monforte, A. J. (2017). Quantitative trait loci analysis of melon (Cucumis melo L.) domestication-related traits. Theoretical and Applied Genetics, 130(9), 1837-1856. doi:10.1007/s00122-017-2928-y

Dong, Y.-H., Yao, J.-L., Atkinson, R. G., Putterill, J. J., Morris, B. A., & Gardner, R. C. (2000). Plant Molecular Biology, 42(4), 623-633. doi:10.1023/a:1006301224125

Dunnett, C. W. (1955). A Multiple Comparison Procedure for Comparing Several Treatments with a Control. Journal of the American Statistical Association, 50(272), 1096-1121. doi:10.1080/01621459.1955.10501294

Eduardo, I., Arús, P., & Monforte, A. J. (2005). Development of a genomic library of near isogenic lines (NILs) in melon (Cucumis melo L.) from the exotic accession PI161375. Theoretical and Applied Genetics, 112(1), 139-148. doi:10.1007/s00122-005-0116-y

Eduardo, I., Arús, P., Monforte, A. J., Obando, J., Fernández-Trujillo, J. P., Martínez, J. A., … van der Knaap, E. (2007). Estimating the Genetic Architecture of Fruit Quality Traits in Melon Using a Genomic Library of Near Isogenic Lines. Journal of the American Society for Horticultural Science, 132(1), 80-89. doi:10.21273/jashs.132.1.80

Esteras, C., Formisano, G., Roig, C., Díaz, A., Blanca, J., Garcia-Mas, J., … Picó, B. (2013). SNP genotyping in melons: genetic variation, population structure, and linkage disequilibrium. Theoretical and Applied Genetics, 126(5), 1285-1303. doi:10.1007/s00122-013-2053-5

Farkas, I., Dombrádi, V., Miskei, M., Szabados, L., & Koncz, C. (2007). Arabidopsis PPP family of serine/threonine phosphatases. Trends in Plant Science, 12(4), 169-176. doi:10.1016/j.tplants.2007.03.003

Fernandez-Silva, I., Moreno, E., Essafi, A., Fergany, M., Garcia-Mas, J., Martín-Hernandez, A. M., … Monforte, A. J. (2010). Shaping melons: agronomic and genetic characterization of QTLs that modify melon fruit morphology. Theoretical and Applied Genetics, 121(5), 931-940. doi:10.1007/s00122-010-1361-2

Gao, Z., Petreikov, M., Zamski, E., & Schaffer, A. A. (1999). Carbohydrate metabolism during early fruit development of sweet melon (Cucumis melo ). Physiologia Plantarum, 106(1), 1-8. doi:10.1034/j.1399-3054.1999.106101.x

Garcia-Mas, J., Benjak, A., Sanseverino, W., Bourgeois, M., Mir, G., Gonzalez, V. M., … Puigdomenech, P. (2012). The genome of melon (Cucumis melo L.). Proceedings of the National Academy of Sciences, 109(29), 11872-11877. doi:10.1073/pnas.1205415109

Harel-Beja, R., Tzuri, G., Portnoy, V., Lotan-Pompan, M., Lev, S., Cohen, S., … Katzir, N. (2010). A genetic map of melon highly enriched with fruit quality QTLs and EST markers, including sugar and carotenoid metabolism genes. Theoretical and Applied Genetics, 121(3), 511-533. doi:10.1007/s00122-010-1327-4

Hendriks, J. H. M., Kolbe, A., Gibon, Y., Stitt, M., & Geigenberger, P. (2003). ADP-Glucose Pyrophosphorylase Is Activated by Posttranslational Redox-Modification in Response to Light and to Sugars in Leaves of Arabidopsis and Other Plant Species. Plant Physiology, 133(2), 838-849. doi:10.1104/pp.103.024513

Hu, B., Jin, J., Guo, A.-Y., Zhang, H., Luo, J., & Gao, G. (2014). GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics, 31(8), 1296-1297. doi:10.1093/bioinformatics/btu817

Hubbard, N. L., Huber, S. C., & Pharr, D. M. (1989). Sucrose Phosphate Synthase and Acid Invertase as Determinants of Sucrose Concentration in Developing Muskmelon (Cucumis melo L.) Fruits. Plant Physiology, 91(4), 1527-1534. doi:10.1104/pp.91.4.1527

Jelitto, T., Sonnewald, U., Willmitzer, L., Hajirezeai, M., & Stitt, M. (1992). Inorganic pyrophosphate content and metabolites in potato and tobacco plants expressing E. coli pyrophosphatase in their cytosol. Planta, 188(2), 238-244. doi:10.1007/bf00216819

Kano, Y. (2006). Effect of Heating Fruit on Cell Size and Sugar Accumulation in Melon Fruit (Cucumis melo L.). HortScience, 41(6), 1431-1434. doi:10.21273/hortsci.41.6.1431

Keurentjes, J. J. B., Bentsink, L., Alonso-Blanco, C., Hanhart, C. J., Blankestijn-De Vries, H., Effgen, S., … Koornneef, M. (2006). Development of a Near-Isogenic Line Population ofArabidopsis thalianaand Comparison of Mapping Power With a Recombinant Inbred Line Population. Genetics, 175(2), 891-905. doi:10.1534/genetics.106.066423

Leida, C., Moser, C., Esteras, C., Sulpice, R., Lunn, J. E., de Langen, F., … Picó, B. (2015). Variability of candidate genes, genetic structure and association with sugar accumulation and climacteric behavior in a broad germplasm collection of melon (Cucumis melo L.). BMC Genetics, 16(1). doi:10.1186/s12863-015-0183-2

Mascarell-Creus, A., Cañizares, J., Vilarrasa-Blasi, J., Mora-García, S., Blanca, J., Gonzalez-Ibeas, D., … Caño-Delgado, A. I. (2009). An oligo-based microarray offers novel transcriptomic approaches for the analysis of pathogen resistance and fruit quality traits in melon (Cucumis melo L.). BMC Genomics, 10(1), 467. doi:10.1186/1471-2164-10-467

Maughan, P. J., Smith, S. M., & Raney, J. A. (2012). Utilization of Super BAC Pools and Fluidigm Access Array Platform for High-Throughput BAC Clone Identification: Proof of Concept. Journal of Biomedicine and Biotechnology, 2012, 1-7. doi:10.1155/2012/405940

Monforte, A. J., Diaz, A., Caño-Delgado, A., & van der Knaap, E. (2013). The genetic basis of fruit morphology in horticultural crops: lessons from tomato and melon. Journal of Experimental Botany, 65(16), 4625-4637. doi:10.1093/jxb/eru017

Monforte, A. J., Oliver, M., Gonzalo, M. J., Alvarez, J. M., Dolcet-Sanjuan, R., & Arús, P. (2003). Identification of quantitative trait loci involved in fruit quality traits in melon (Cucumis melo L.). Theoretical and Applied Genetics, 108(4), 750-758. doi:10.1007/s00122-003-1483-x

Mora-Garcia, S. (2004). Nuclear protein phosphatases with Kelch-repeat domains modulate the response to brassinosteroids in Arabidopsis. Genes & Development, 18(4), 448-460. doi:10.1101/gad.1174204

Obando-Ulloa, J. M., Eduardo, I., Monforte, A. J., & Fernández-Trujillo, J. P. (2009). Identification of QTLs related to sugar and organic acid composition in melon using near-isogenic lines. Scientia Horticulturae, 121(4), 425-433. doi:10.1016/j.scienta.2009.02.023

Paris, M. K., Zalapa, J. E., McCreight, J. D., & Staub, J. E. (2008). Genetic dissection of fruit quality components in melon (Cucumis melo L.) using a RIL population derived from exotic × elite US Western Shipping germplasm. Molecular Breeding, 22(3), 405-419. doi:10.1007/s11032-008-9185-3

Park, S. O., Hwang, H. Y., & Crosby, K. M. (2009). A Genetic Linkage Map including Loci for Male Sterility, Sugars, and Ascorbic Acid in Melon. Journal of the American Society for Horticultural Science, 134(1), 67-76. doi:10.21273/jashs.134.1.67

Pavan, S., Marcotrigiano, A. R., Ciani, E., Mazzeo, R., Zonno, V., Ruggieri, V., … Ricciardi, L. (2017). Genotyping-by-sequencing of a melon (Cucumis melo L.) germplasm collection from a secondary center of diversity highlights patterns of genetic variation and genomic features of different gene pools. BMC Genomics, 18(1). doi:10.1186/s12864-016-3429-0

Perpiñá, G., Esteras, C., Gibon, Y., Monforte, A. J., & Picó, B. (2016). A new genomic library of melon introgression lines in a cantaloupe genetic background for dissecting desirable agronomical traits. BMC Plant Biology, 16(1). doi:10.1186/s12870-016-0842-0

Pitrat, M. (s. f.). Melon. Vegetables I, 283-315. doi:10.1007/978-0-387-30443-4_9

Reiser, L., Modrusan, Z., Margossian, L., Samach, A., Ohad, N., Haughn, G. W., & Fischer, R. L. (1995). The BELL1 gene encodes a homeodomain protein involved in pattern formation in the Arabidopsis ovule primordium. Cell, 83(5), 735-742. doi:10.1016/0092-8674(95)90186-8

Ríos, P., Argyris, J., Vegas, J., Leida, C., Kenigswald, M., Tzuri, G., … Garcia-Mas, J. (2017). ETHQV6.3 is involved in melon climacteric fruit ripening and is encoded by a NAC domain transcription factor. The Plant Journal, 91(4), 671-683. doi:10.1111/tpj.13596

Sagar, M., Chervin, C., Mila, I., Hao, Y., Roustan, J.-P., Benichou, M., … Zouine, M. (2013). SlARF4, an Auxin Response Factor Involved in the Control of Sugar Metabolism during Tomato Fruit Development. Plant Physiology, 161(3), 1362-1374. doi:10.1104/pp.113.213843

Saladié, M., Cañizares, J., Phillips, M. A., Rodriguez-Concepcion, M., Larrigaudière, C., Gibon, Y., … Garcia-Mas, J. (2015). Comparative transcriptional profiling analysis of developing melon (Cucumis melo L.) fruit from climacteric and non-climacteric varieties. BMC Genomics, 16(1). doi:10.1186/s12864-015-1649-3

Sanseverino, W., Hénaff, E., Vives, C., Pinosio, S., Burgos-Paz, W., Morgante, M., … Casacuberta, J. M. (2015). Transposon Insertions, Structural Variations, and SNPs Contribute to the Evolution of the Melon Genome. Molecular Biology and Evolution, 32(10), 2760-2774. doi:10.1093/molbev/msv152

Sauvage, C., Segura, V., Bauchet, G., Stevens, R., Do, P. T., Nikoloski, Z., … Causse, M. (2014). Genome-Wide Association in Tomato Reveals 44 Candidate Loci for Fruit Metabolic Traits. Plant Physiology, 165(3), 1120-1132. doi:10.1104/pp.114.241521

Sebastian, P., Schaefer, H., Telford, I. R. H., & Renner, S. S. (2010). Cucumber (Cucumis sativus) and melon (C. melo) have numerous wild relatives in Asia and Australia, and the sister species of melon is from Australia. Proceedings of the National Academy of Sciences, 107(32), 14269-14273. doi:10.1073/pnas.1005338107

Stepansky, A., Kovalski, I., Schaffer, A. A., & Perl-Treves, R. (1999). Genetic Resources and Crop Evolution, 46(1), 53-62. doi:10.1023/a:1008636732481

Wahl, V., Brand, L. H., Guo, Y.-L., & Schmid, M. (2010). The FANTASTIC FOUR proteins influence shoot meristem size in Arabidopsis thaliana. BMC Plant Biology, 10(1), 285. doi:10.1186/1471-2229-10-285

Wang, J., Lin, M., Crenshaw, A., Hutchinson, A., Hicks, B., Yeager, M., … Ramakrishnan, R. (2009). High-throughput single nucleotide polymorphism genotyping using nanofluidic Dynamic Arrays. BMC Genomics, 10(1), 561. doi:10.1186/1471-2164-10-561

Yang, C.-J., Zhang, C., Lu, Y.-N., Jin, J.-Q., & Wang, X.-L. (2011). The Mechanisms of Brassinosteroids’ Action: From Signal Transduction to Plant Development. Molecular Plant, 4(4), 588-600. doi:10.1093/mp/ssr020

Zeng, Z. B. (1993). Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proceedings of the National Academy of Sciences, 90(23), 10972-10976. doi:10.1073/pnas.90.23.10972

Zhang, C., Yu, X., Ayre, B. G., & Turgeon, R. (2012). The Origin and Composition of Cucurbit «Phloem» Exudate. Plant Physiology, 158(4), 1873-1882. doi:10.1104/pp.112.194431

Zhang, Y. (2008). I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 9(1). doi:10.1186/1471-2105-9-40

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record