Mostrar el registro sencillo del ítem
dc.contributor.author | ARGIRYS, J.M.![]() |
es_ES |
dc.contributor.author | DIAZ, A.![]() |
es_ES |
dc.contributor.author | Ruggieri, V.![]() |
es_ES |
dc.contributor.author | FERNANDEZ, M.![]() |
es_ES |
dc.contributor.author | Jahrmann, T.![]() |
es_ES |
dc.contributor.author | GIBON, Y.![]() |
es_ES |
dc.contributor.author | Picó Sirvent, María Belén![]() |
es_ES |
dc.contributor.author | Martín-Hernández, A.M.![]() |
es_ES |
dc.contributor.author | MONFORTE, A.J.![]() |
es_ES |
dc.contributor.author | GARCIA-MAS, J.![]() |
es_ES |
dc.date.accessioned | 2020-07-30T03:35:32Z | |
dc.date.available | 2020-07-30T03:35:32Z | |
dc.date.issued | 2017-09-26 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/148905 | |
dc.description.abstract | [EN] Sugar content is the major determinant of both fruit quality and consumer acceptance in melon (Cucumis melo L), and is a primary target for crop improvement. Nearisogenic lines (NILs) derived from the intraspecific cross between a "Piel de Sapo" (PS) type and the exotic cultivar "Songwhan Charmi" (SC), and several populations generated from the cross of PS x Ames 24294 ("Trigonus"), a wild melon, were used to identify QTL related to sugar and organic acid composition. Seventy-eight QTL were detected across several locations and different years, with three important clusters related to sugar content located on chromosomes 4, 5, and 7. Two PS x SC NILs (SC5-1 and SC5-2) sharing a common genomic interval of 1.7Mb at the top of chromosome 5 contained QTL reducing soluble solids content (SSC) and sucrose content by an average of 29 and 68%, respectively. This cluster collocated with QTL affecting sugar content identified in other studies in lines developed from the PS x SC cross and supported the presence of a stable consensus locus involved in sugar accumulation that we named SUCQSC5.1. QTL reducing soluble solids and sucrose content identified in the "Trigonus" mapping populations, as well as QTL identified in previous studies from other ssp. agrestis sources, collocated with SUCQSC5.1, suggesting that they may be allelic and implying a role in domestication. In subNILs derived from the PS x SC5-1 cross, SUCQSC5.1 reduced SSC and sucrose content by an average of 18 and 34%, respectively, and was fine-mapped to a 56.1 kb interval containing four genes. Expression analysis of the candidate genes in mature fruit showed differences between the subNILs with PS alleles that were "high" sugar and SC alleles of "low" sugar phenotypes for MELO3C014519, encoding a putative BEL1-like homeodomain protein. Sequence differences in the gene predicted to affect protein function were restricted to SC and other ssp. agrestis cultivar groups. These results provide the basis for further investigation of genes affecting sugar accumulation in melon. | es_ES |
dc.description.sponsorship | This work was supported by the Spanish Ministry of Economy and Competitivity grants AGL2015-64625-C2-1-R and PIM2010PKB-00691, Centro de Excelencia Severo Ochoa 2016-2020 and the CERCA Programme/Generalitat de Catalunya to JG, AGL2015-64625-C2-R to AJM. AD was supported by a Jae-Doc contract from CSIC. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Frontiers Media SA | es_ES |
dc.relation.ispartof | Frontiers in Plant Science | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | QTL | es_ES |
dc.subject | Melon | es_ES |
dc.subject | Sugar | es_ES |
dc.subject | Sucrose | es_ES |
dc.subject | NILs | es_ES |
dc.subject | Fine-mapping | es_ES |
dc.subject | Candidate genes | es_ES |
dc.subject | BEL1-like | es_ES |
dc.subject.classification | GENETICA | es_ES |
dc.title | QTL Analyses in Multiple Populations Employed for the Fine Mapping and Identification of Candidate Genes at a Locus Affecting Sugar Accumulation in Melon (Cucumis melo L.) | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3389/fpls.2017.01679 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//AGL2015-64625-C2-1-R/ES/DISECCION GENETICA DE DOS CARACTERES DE INTERES AGRONOMICO EN MELON: RESISTENCIA A CUCUMBER MOSAIC VIRUS Y MADURACION CLIMATERICA DE FRUTO./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//AGL2015-64625-C2-1-R/ES/DISECCION GENETICA DE DOS CARACTERES DE INTERES AGRONOMICO EN MELON: RESISTENCIA A CUCUMBER MOSAIC VIRUS Y MADURACION CLIMATERICA DE FRUTO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//PIM2010PKB-00691/ES/SUGARS AND FRUIT QUALITY IN MELON/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//AGL2015-64625-C2-2-R/ES/EVOLUCION Y DIVERSIFICACION EN CUCUMIS. GENETICA DE LA DOMESTICACION, MORFOLOGIA DE FRUTO Y BARRERAS REPRODUCTIVAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.description.bibliographicCitation | Argirys, J.; Diaz, A.; Ruggieri, V.; Fernandez, M.; Jahrmann, T.; Gibon, Y.; Picó Sirvent, MB.... (2017). QTL Analyses in Multiple Populations Employed for the Fine Mapping and Identification of Candidate Genes at a Locus Affecting Sugar Accumulation in Melon (Cucumis melo L.). Frontiers in Plant Science. 8:1-20. https://doi.org/10.3389/fpls.2017.01679 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3389/fpls.2017.01679 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 20 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.identifier.eissn | 1664-462X | es_ES |
dc.identifier.pmid | 29018473 | es_ES |
dc.identifier.pmcid | PMC5623194 | es_ES |
dc.relation.pasarela | S\346335 | es_ES |
dc.contributor.funder | Generalitat de Catalunya | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Consejo Superior de Investigaciones Científicas | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Argyris, J. M., Pujol, M., Martín-Hernández, A. M., & Garcia-Mas, J. (2015). Combined use of genetic and genomics resources to understand virus resistance and fruit quality traits in melon. Physiologia Plantarum, 155(1), 4-11. doi:10.1111/ppl.12323 | es_ES |
dc.description.references | Argyris, J. M., Ruiz-Herrera, A., Madriz-Masis, P., Sanseverino, W., Morata, J., Pujol, M., … Garcia-Mas, J. (2015). Use of targeted SNP selection for an improved anchoring of the melon (Cucumis melo L.) scaffold genome assembly. BMC Genomics, 16(1), 4. doi:10.1186/s12864-014-1196-3 | es_ES |
dc.description.references | Ariizumi, T., Higuchi, K., Arakaki, S., Sano, T., Asamizu, E., & Ezura, H. (2011). Genetic suppression analysis in novel vacuolar processing enzymes reveals their roles in controlling sugar accumulation in tomato fruits. Journal of Experimental Botany, 62(8), 2773-2786. doi:10.1093/jxb/erq451 | es_ES |
dc.description.references | Bartley, G. E., & Ishida, B. K. (2003). BMC Plant Biology, 3(1), 4. doi:10.1186/1471-2229-3-4 | es_ES |
dc.description.references | Beaulieu, J. C., Lea, J. M., Eggleston, G., & Peralta-Inga, Z. (2003). Sugar and Organic Acid Variations in Commercial Cantaloupes and Their Inbred Parents. Journal of the American Society for Horticultural Science, 128(4), 531-536. doi:10.21273/jashs.128.4.0531 | es_ES |
dc.description.references | Bencivenga, S., Simonini, S., Benková, E., & Colombo, L. (2012). The Transcription Factors BEL1 and SPL Are Required for Cytokinin and Auxin Signaling During Ovule Development in Arabidopsis. The Plant Cell, 24(7), 2886-2897. doi:10.1105/tpc.112.100164 | es_ES |
dc.description.references | Bermúdez, L., Urias, U., Milstein, D., Kamenetzky, L., Asis, R., Fernie, A. R., … Rossi, M. (2008). A candidate gene survey of quantitative trait loci affecting chemical composition in tomato fruit. Journal of Experimental Botany, 59(10), 2875-2890. doi:10.1093/jxb/ern146 | es_ES |
dc.description.references | Brenner, W. G., Ramireddy, E., Heyl, A., & Schmülling, T. (2012). Gene Regulation by Cytokinin in Arabidopsis. Frontiers in Plant Science, 3. doi:10.3389/fpls.2012.00008 | es_ES |
dc.description.references | Burger, Y., Sa’ar, U., Distelfeld, A., Katzir, N., Yeselson, Y., Shen, S., & Schaffer, A. A. (2003). Development of Sweet Melon (Cucumis melo) Genotypes Combining High Sucrose and Organic Acid Content. Journal of the American Society for Horticultural Science, 128(4), 537-540. doi:10.21273/jashs.128.4.0537 | es_ES |
dc.description.references | Burger, Y., & Schaffer, A. A. (2007). The Contribution of Sucrose Metabolism Enzymes to Sucrose Accumulation in Cucumis melo. Journal of the American Society for Horticultural Science, 132(5), 704-712. doi:10.21273/jashs.132.5.704 | es_ES |
dc.description.references | Burglin, T. R. (1997). Analysis of TALE superclass homeobox genes (MEIS, PBC, KNOX, Iroquois, TGIF) reveals a novel domain conserved between plants and animals. Nucleic Acids Research, 25(21), 4173-4180. doi:10.1093/nar/25.21.4173 | es_ES |
dc.description.references | Castro, G. E., Perpiñá, G., Esteras, C., Monforte, A. J., & Picó, M. B. (2017). A new introgression line collection to improve ‘Piel de Sapo’ melons. Acta Horticulturae, (1151), 81-86. doi:10.17660/actahortic.2017.1151.14 | es_ES |
dc.description.references | Chen, H., Banerjee, A. K., & Hannapel, D. J. (2004). The tandem complex of BEL and KNOX partners is required for transcriptional repression ofga20ox1. The Plant Journal, 38(2), 276-284. doi:10.1111/j.1365-313x.2004.02048.x | es_ES |
dc.description.references | Chen, H., Rosin, F. M., Prat, S., & Hannapel, D. J. (2003). Interacting Transcription Factors from the Three-Amino Acid Loop Extension Superclass Regulate Tuber Formation. Plant Physiology, 132(3), 1391-1404. doi:10.1104/pp.103.022434 | es_ES |
dc.description.references | Cingolani, P., Platts, A., Wang, L. L., Coon, M., Nguyen, T., Wang, L., … Ruden, D. M. (2012). A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly, 6(2), 80-92. doi:10.4161/fly.19695 | es_ES |
dc.description.references | Cohen, S., Itkin, M., Yeselson, Y., Tzuri, G., Portnoy, V., Harel-Baja, R., … Schaffer, A. A. (2014). The PH gene determines fruit acidity and contributes to the evolution of sweet melons. Nature Communications, 5(1). doi:10.1038/ncomms5026 | es_ES |
dc.description.references | Dai, N., Cohen, S., Portnoy, V., Tzuri, G., Harel-Beja, R., Pompan-Lotan, M., … Schaffer, A. A. (2011). Metabolism of soluble sugars in developing melon fruit: a global transcriptional view of the metabolic transition to sucrose accumulation. Plant Molecular Biology, 76(1-2), 1-18. doi:10.1007/s11103-011-9757-1 | es_ES |
dc.description.references | Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., … DePristo, M. A. (2011). The variant call format and VCFtools. Bioinformatics, 27(15), 2156-2158. doi:10.1093/bioinformatics/btr330 | es_ES |
dc.description.references | Del Amor, F. M., Martinez, V., & Cerdá, A. (1999). Salinity Duration and Concentration Affect Fruit Yield and Quality, and Growth and Mineral Composition of Melon Plants Grown in Perlite. HortScience, 34(7), 1234-1237. doi:10.21273/hortsci.34.7.1234 | es_ES |
dc.description.references | Diaz, A., Fergany, M., Formisano, G., Ziarsolo, P., Blanca, J., Fei, Z., … Monforte, A. J. (2011). A consensus linkage map for molecular markers and Quantitative Trait Loci associated with economically important traits in melon (Cucumis melo L.). BMC Plant Biology, 11(1), 111. doi:10.1186/1471-2229-11-111 | es_ES |
dc.description.references | Diaz, A., Forment, J., Argyris, J. M., Fukino, N., Tzuri, G., Harel-Beja, R., … Monforte, A. J. (2015). Anchoring the consensus ICuGI genetic map to the melon (Cucumis melo L.) genome. Molecular Breeding, 35(10). doi:10.1007/s11032-015-0381-7 | es_ES |
dc.description.references | Díaz, A., Martín-Hernández, A. M., Dolcet-Sanjuan, R., Garcés-Claver, A., Álvarez, J. M., Garcia-Mas, J., … Monforte, A. J. (2017). Quantitative trait loci analysis of melon (Cucumis melo L.) domestication-related traits. Theoretical and Applied Genetics, 130(9), 1837-1856. doi:10.1007/s00122-017-2928-y | es_ES |
dc.description.references | Dong, Y.-H., Yao, J.-L., Atkinson, R. G., Putterill, J. J., Morris, B. A., & Gardner, R. C. (2000). Plant Molecular Biology, 42(4), 623-633. doi:10.1023/a:1006301224125 | es_ES |
dc.description.references | Dunnett, C. W. (1955). A Multiple Comparison Procedure for Comparing Several Treatments with a Control. Journal of the American Statistical Association, 50(272), 1096-1121. doi:10.1080/01621459.1955.10501294 | es_ES |
dc.description.references | Eduardo, I., Arús, P., & Monforte, A. J. (2005). Development of a genomic library of near isogenic lines (NILs) in melon (Cucumis melo L.) from the exotic accession PI161375. Theoretical and Applied Genetics, 112(1), 139-148. doi:10.1007/s00122-005-0116-y | es_ES |
dc.description.references | Eduardo, I., Arús, P., Monforte, A. J., Obando, J., Fernández-Trujillo, J. P., Martínez, J. A., … van der Knaap, E. (2007). Estimating the Genetic Architecture of Fruit Quality Traits in Melon Using a Genomic Library of Near Isogenic Lines. Journal of the American Society for Horticultural Science, 132(1), 80-89. doi:10.21273/jashs.132.1.80 | es_ES |
dc.description.references | Esteras, C., Formisano, G., Roig, C., Díaz, A., Blanca, J., Garcia-Mas, J., … Picó, B. (2013). SNP genotyping in melons: genetic variation, population structure, and linkage disequilibrium. Theoretical and Applied Genetics, 126(5), 1285-1303. doi:10.1007/s00122-013-2053-5 | es_ES |
dc.description.references | Farkas, I., Dombrádi, V., Miskei, M., Szabados, L., & Koncz, C. (2007). Arabidopsis PPP family of serine/threonine phosphatases. Trends in Plant Science, 12(4), 169-176. doi:10.1016/j.tplants.2007.03.003 | es_ES |
dc.description.references | Fernandez-Silva, I., Moreno, E., Essafi, A., Fergany, M., Garcia-Mas, J., Martín-Hernandez, A. M., … Monforte, A. J. (2010). Shaping melons: agronomic and genetic characterization of QTLs that modify melon fruit morphology. Theoretical and Applied Genetics, 121(5), 931-940. doi:10.1007/s00122-010-1361-2 | es_ES |
dc.description.references | Gao, Z., Petreikov, M., Zamski, E., & Schaffer, A. A. (1999). Carbohydrate metabolism during early fruit development of sweet melon (Cucumis melo ). Physiologia Plantarum, 106(1), 1-8. doi:10.1034/j.1399-3054.1999.106101.x | es_ES |
dc.description.references | Garcia-Mas, J., Benjak, A., Sanseverino, W., Bourgeois, M., Mir, G., Gonzalez, V. M., … Puigdomenech, P. (2012). The genome of melon (Cucumis melo L.). Proceedings of the National Academy of Sciences, 109(29), 11872-11877. doi:10.1073/pnas.1205415109 | es_ES |
dc.description.references | Harel-Beja, R., Tzuri, G., Portnoy, V., Lotan-Pompan, M., Lev, S., Cohen, S., … Katzir, N. (2010). A genetic map of melon highly enriched with fruit quality QTLs and EST markers, including sugar and carotenoid metabolism genes. Theoretical and Applied Genetics, 121(3), 511-533. doi:10.1007/s00122-010-1327-4 | es_ES |
dc.description.references | Hendriks, J. H. M., Kolbe, A., Gibon, Y., Stitt, M., & Geigenberger, P. (2003). ADP-Glucose Pyrophosphorylase Is Activated by Posttranslational Redox-Modification in Response to Light and to Sugars in Leaves of Arabidopsis and Other Plant Species. Plant Physiology, 133(2), 838-849. doi:10.1104/pp.103.024513 | es_ES |
dc.description.references | Hu, B., Jin, J., Guo, A.-Y., Zhang, H., Luo, J., & Gao, G. (2014). GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics, 31(8), 1296-1297. doi:10.1093/bioinformatics/btu817 | es_ES |
dc.description.references | Hubbard, N. L., Huber, S. C., & Pharr, D. M. (1989). Sucrose Phosphate Synthase and Acid Invertase as Determinants of Sucrose Concentration in Developing Muskmelon (Cucumis melo L.) Fruits. Plant Physiology, 91(4), 1527-1534. doi:10.1104/pp.91.4.1527 | es_ES |
dc.description.references | Jelitto, T., Sonnewald, U., Willmitzer, L., Hajirezeai, M., & Stitt, M. (1992). Inorganic pyrophosphate content and metabolites in potato and tobacco plants expressing E. coli pyrophosphatase in their cytosol. Planta, 188(2), 238-244. doi:10.1007/bf00216819 | es_ES |
dc.description.references | Kano, Y. (2006). Effect of Heating Fruit on Cell Size and Sugar Accumulation in Melon Fruit (Cucumis melo L.). HortScience, 41(6), 1431-1434. doi:10.21273/hortsci.41.6.1431 | es_ES |
dc.description.references | Keurentjes, J. J. B., Bentsink, L., Alonso-Blanco, C., Hanhart, C. J., Blankestijn-De Vries, H., Effgen, S., … Koornneef, M. (2006). Development of a Near-Isogenic Line Population ofArabidopsis thalianaand Comparison of Mapping Power With a Recombinant Inbred Line Population. Genetics, 175(2), 891-905. doi:10.1534/genetics.106.066423 | es_ES |
dc.description.references | Leida, C., Moser, C., Esteras, C., Sulpice, R., Lunn, J. E., de Langen, F., … Picó, B. (2015). Variability of candidate genes, genetic structure and association with sugar accumulation and climacteric behavior in a broad germplasm collection of melon (Cucumis melo L.). BMC Genetics, 16(1). doi:10.1186/s12863-015-0183-2 | es_ES |
dc.description.references | Mascarell-Creus, A., Cañizares, J., Vilarrasa-Blasi, J., Mora-García, S., Blanca, J., Gonzalez-Ibeas, D., … Caño-Delgado, A. I. (2009). An oligo-based microarray offers novel transcriptomic approaches for the analysis of pathogen resistance and fruit quality traits in melon (Cucumis melo L.). BMC Genomics, 10(1), 467. doi:10.1186/1471-2164-10-467 | es_ES |
dc.description.references | Maughan, P. J., Smith, S. M., & Raney, J. A. (2012). Utilization of Super BAC Pools and Fluidigm Access Array Platform for High-Throughput BAC Clone Identification: Proof of Concept. Journal of Biomedicine and Biotechnology, 2012, 1-7. doi:10.1155/2012/405940 | es_ES |
dc.description.references | Monforte, A. J., Diaz, A., Caño-Delgado, A., & van der Knaap, E. (2013). The genetic basis of fruit morphology in horticultural crops: lessons from tomato and melon. Journal of Experimental Botany, 65(16), 4625-4637. doi:10.1093/jxb/eru017 | es_ES |
dc.description.references | Monforte, A. J., Oliver, M., Gonzalo, M. J., Alvarez, J. M., Dolcet-Sanjuan, R., & Arús, P. (2003). Identification of quantitative trait loci involved in fruit quality traits in melon (Cucumis melo L.). Theoretical and Applied Genetics, 108(4), 750-758. doi:10.1007/s00122-003-1483-x | es_ES |
dc.description.references | Mora-Garcia, S. (2004). Nuclear protein phosphatases with Kelch-repeat domains modulate the response to brassinosteroids in Arabidopsis. Genes & Development, 18(4), 448-460. doi:10.1101/gad.1174204 | es_ES |
dc.description.references | Obando-Ulloa, J. M., Eduardo, I., Monforte, A. J., & Fernández-Trujillo, J. P. (2009). Identification of QTLs related to sugar and organic acid composition in melon using near-isogenic lines. Scientia Horticulturae, 121(4), 425-433. doi:10.1016/j.scienta.2009.02.023 | es_ES |
dc.description.references | Paris, M. K., Zalapa, J. E., McCreight, J. D., & Staub, J. E. (2008). Genetic dissection of fruit quality components in melon (Cucumis melo L.) using a RIL population derived from exotic × elite US Western Shipping germplasm. Molecular Breeding, 22(3), 405-419. doi:10.1007/s11032-008-9185-3 | es_ES |
dc.description.references | Park, S. O., Hwang, H. Y., & Crosby, K. M. (2009). A Genetic Linkage Map including Loci for Male Sterility, Sugars, and Ascorbic Acid in Melon. Journal of the American Society for Horticultural Science, 134(1), 67-76. doi:10.21273/jashs.134.1.67 | es_ES |
dc.description.references | Pavan, S., Marcotrigiano, A. R., Ciani, E., Mazzeo, R., Zonno, V., Ruggieri, V., … Ricciardi, L. (2017). Genotyping-by-sequencing of a melon (Cucumis melo L.) germplasm collection from a secondary center of diversity highlights patterns of genetic variation and genomic features of different gene pools. BMC Genomics, 18(1). doi:10.1186/s12864-016-3429-0 | es_ES |
dc.description.references | Perpiñá, G., Esteras, C., Gibon, Y., Monforte, A. J., & Picó, B. (2016). A new genomic library of melon introgression lines in a cantaloupe genetic background for dissecting desirable agronomical traits. BMC Plant Biology, 16(1). doi:10.1186/s12870-016-0842-0 | es_ES |
dc.description.references | Pitrat, M. (s. f.). Melon. Vegetables I, 283-315. doi:10.1007/978-0-387-30443-4_9 | es_ES |
dc.description.references | Reiser, L., Modrusan, Z., Margossian, L., Samach, A., Ohad, N., Haughn, G. W., & Fischer, R. L. (1995). The BELL1 gene encodes a homeodomain protein involved in pattern formation in the Arabidopsis ovule primordium. Cell, 83(5), 735-742. doi:10.1016/0092-8674(95)90186-8 | es_ES |
dc.description.references | Ríos, P., Argyris, J., Vegas, J., Leida, C., Kenigswald, M., Tzuri, G., … Garcia-Mas, J. (2017). ETHQV6.3 is involved in melon climacteric fruit ripening and is encoded by a NAC domain transcription factor. The Plant Journal, 91(4), 671-683. doi:10.1111/tpj.13596 | es_ES |
dc.description.references | Sagar, M., Chervin, C., Mila, I., Hao, Y., Roustan, J.-P., Benichou, M., … Zouine, M. (2013). SlARF4, an Auxin Response Factor Involved in the Control of Sugar Metabolism during Tomato Fruit Development. Plant Physiology, 161(3), 1362-1374. doi:10.1104/pp.113.213843 | es_ES |
dc.description.references | Saladié, M., Cañizares, J., Phillips, M. A., Rodriguez-Concepcion, M., Larrigaudière, C., Gibon, Y., … Garcia-Mas, J. (2015). Comparative transcriptional profiling analysis of developing melon (Cucumis melo L.) fruit from climacteric and non-climacteric varieties. BMC Genomics, 16(1). doi:10.1186/s12864-015-1649-3 | es_ES |
dc.description.references | Sanseverino, W., Hénaff, E., Vives, C., Pinosio, S., Burgos-Paz, W., Morgante, M., … Casacuberta, J. M. (2015). Transposon Insertions, Structural Variations, and SNPs Contribute to the Evolution of the Melon Genome. Molecular Biology and Evolution, 32(10), 2760-2774. doi:10.1093/molbev/msv152 | es_ES |
dc.description.references | Sauvage, C., Segura, V., Bauchet, G., Stevens, R., Do, P. T., Nikoloski, Z., … Causse, M. (2014). Genome-Wide Association in Tomato Reveals 44 Candidate Loci for Fruit Metabolic Traits. Plant Physiology, 165(3), 1120-1132. doi:10.1104/pp.114.241521 | es_ES |
dc.description.references | Sebastian, P., Schaefer, H., Telford, I. R. H., & Renner, S. S. (2010). Cucumber (Cucumis sativus) and melon (C. melo) have numerous wild relatives in Asia and Australia, and the sister species of melon is from Australia. Proceedings of the National Academy of Sciences, 107(32), 14269-14273. doi:10.1073/pnas.1005338107 | es_ES |
dc.description.references | Stepansky, A., Kovalski, I., Schaffer, A. A., & Perl-Treves, R. (1999). Genetic Resources and Crop Evolution, 46(1), 53-62. doi:10.1023/a:1008636732481 | es_ES |
dc.description.references | Wahl, V., Brand, L. H., Guo, Y.-L., & Schmid, M. (2010). The FANTASTIC FOUR proteins influence shoot meristem size in Arabidopsis thaliana. BMC Plant Biology, 10(1), 285. doi:10.1186/1471-2229-10-285 | es_ES |
dc.description.references | Wang, J., Lin, M., Crenshaw, A., Hutchinson, A., Hicks, B., Yeager, M., … Ramakrishnan, R. (2009). High-throughput single nucleotide polymorphism genotyping using nanofluidic Dynamic Arrays. BMC Genomics, 10(1), 561. doi:10.1186/1471-2164-10-561 | es_ES |
dc.description.references | Yang, C.-J., Zhang, C., Lu, Y.-N., Jin, J.-Q., & Wang, X.-L. (2011). The Mechanisms of Brassinosteroids’ Action: From Signal Transduction to Plant Development. Molecular Plant, 4(4), 588-600. doi:10.1093/mp/ssr020 | es_ES |
dc.description.references | Zeng, Z. B. (1993). Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proceedings of the National Academy of Sciences, 90(23), 10972-10976. doi:10.1073/pnas.90.23.10972 | es_ES |
dc.description.references | Zhang, C., Yu, X., Ayre, B. G., & Turgeon, R. (2012). The Origin and Composition of Cucurbit «Phloem» Exudate. Plant Physiology, 158(4), 1873-1882. doi:10.1104/pp.112.194431 | es_ES |
dc.description.references | Zhang, Y. (2008). I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 9(1). doi:10.1186/1471-2105-9-40 | es_ES |