- -

Thermo-electrochemical production of compressed hydrogen from methane with near-zero energy loss

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Thermo-electrochemical production of compressed hydrogen from methane with near-zero energy loss

Show full item record

Malerød-Fjeld, H.; Clark, D.; Yuste Tirados, I.; Zanón González, R.; Catalán-Martínez, D.; Beeaff, D.; Hernández Morejudo, S.... (2017). Thermo-electrochemical production of compressed hydrogen from methane with near-zero energy loss. Nature Energy. 2(12):923-931. https://doi.org/10.1038/s41560-017-0029-4

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/148908

Files in this item

Item Metadata

Title: Thermo-electrochemical production of compressed hydrogen from methane with near-zero energy loss
Author: Malerød-Fjeld, H. Clark, D. Yuste Tirados, Irene Zanón González, Raquel Catalán-Martínez, David Beeaff, D. Hernández Morejudo, Selene Vestre, P.K. Norby, T. Haugsrud, R. Serra Alfaro, José Manuel Kjølseth, C.
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Issued date:
Abstract:
[EN] Conventional production of hydrogen requires large industrial plants to minimize energy losses and capital costs associated with steam reforming, water-gas shift, product separation and compression. Here we present a ...[+]
Subjects: Heterogeneous catalysis , Hydrogen storage , Natural gas
Copyrigths: Reserva de todos los derechos
Source:
Nature Energy. (eissn: 2058-7546 )
DOI: 10.1038/s41560-017-0029-4
Publisher:
Nature Publishing Group
Publisher version: https://doi.org/10.1038/s41560-017-0029-4
Project ID:
RCN/256264
MINECO/SEV-2016-0683
Thanks:
This work was supported by the Research Council of Norway (grant 256264) and the Spanish Government (SEV-2016-0683 grant).
Type: Artículo

References

Morejudo, S. H. et al. Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor. Science 353, 563–566 (2016).

Chu, S. & Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012).

Logan, B. E. & Elimelech, M. Membrane-based processes for sustainable power generation using water. Nature 488, 313–319 (2012). [+]
Morejudo, S. H. et al. Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor. Science 353, 563–566 (2016).

Chu, S. & Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012).

Logan, B. E. & Elimelech, M. Membrane-based processes for sustainable power generation using water. Nature 488, 313–319 (2012).

Rostrup-Nielsen, J. R. Catalysis and large-scale conversion of natural gas. Catal. Today 21, 257–267 (1994).

Voss, C. Applications of pressure swing adsorption technology. Adsorption 11, 527–529 (2005).

Gallucci, F., Fernandez, E., Corengia, P. & van Sint Annaland, M. Recent advances on membranes and membrane reactors for hydrogen production. Chem. Eng. Sci. 92, 40–66 (2013).

Boeltken, T., Wunsch, A., Gietzelt, T., Pfeifer, P. & Dittmeyer, R. Ultra-compact microstructured methane steam reformer with integrated Palladium membrane for on-site production of pure hydrogen: Experimental demonstration. Int. J. Hydrogen Energy 39, 18058–18068 (2014).

Al-Mufachi, N. A., Rees, N. V. & Steinberger-Wilkens, R. Hydrogen selective membranes: A review of palladium-based dense metal membranes. Renew. Sustainable Energy Rev. 47, 540–551 (2015).

Sengodan, S. et al. Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells. Nat. Mater. 14, 205–209 (2015).

Myung, J.-h, Neagu, D., Miller, D. N. & Irvine, J. T. S. Switching on electrocatalytic activity in solid oxide cells. Nature 537, 528–531 (2016).

Iwahara, H., Uchida, H., Ono, K. & Ogaki, K. Proton conduction in sintered oxides based on BaCeO3. J. Electrochem. Soc. 135, 529–533 (1988).

Hamakawa, S., Hibino, T. & Iwahara, H. Electrochemical methane coupling using proton conductors. J. Electrochem. Soc. 140, 459–462 (1993).

Bonanos, N., Knight, K. S. & Ellis, B. Perovskite solid electrolytes: structure, transport properties and fuel cell applications. Solid State Ion. 79, 161–170 (1995).

Norby, T. Solid-state protonic conductors: principles, properties, progress and prospects. Solid State Ion. 125, 1–11 (1999).

Kreuer, K. D. On the development of proton conducting materials for technological applications. Solid State Ion. 97, 1–15 (1997).

Kreuer, K. D. Aspects of the formation and mobility of protonic charge carriers and the stability of perovskite-type oxides. Solid State Ion. 125, 285–302 (1999).

Kreuer, K. D. Proton-conducting oxides. Annu. Rev. Mater. Res. 33, 333–359 (2003).

Tao, S. W. & Irvine, J. T. S. A stable, easily sintered proton-conducting oxide electrolyte for moderate-temperature fuel cells and electrolyzers. Adv. Mater. 18, 11581-1584 (2006).

Wang, H., Peng, R., Wu, X., Hu, J. & Xia, C. Sintering behavior and conductivity study of yttrium-doped BaCeO3–BaZrO3 solid solutions using ZnO additives. J. Am. Ceram. Soc. 92, 2623–2629 (2009).

Coors, W. G. in Advances in Ceramics—Synthesis and Characterization, Processing and Specific Applications (Ed. Sikalidis, C.) Ch. 22, 501–520 (InTech, UK, 2011) (2011).

Manabe, R. et al. Surface protonics promotes catalysis. Sci. Rep. 6, 38007, (2016).

Rohland, B., Eberle, K., Ströbel, R., Scholta, J. & Garche, J. Electrochemical hydrogen compressor. Electrochimica Acta 43, 3841–3846 (1998).

Kochetova, N., Animitsa, I., Medvedev, D., Demin, A. & Tsiakaras, P. Recent activity in the development of proton-conducting oxides for high-temperature applications. RSC Adv. 6, 73222–73268 (2016).

Yamazaki, Y. et al. Proton trapping in yttrium-doped barium zirconate. Nat. Mater. 12, 647–651 (2013).

Kjølseth, C. et al. Space-charge theory applied to the grain boundary impedance of proton conducting BaZr0.9Y0.1O3-δ . Solid State Ion. 181, 268–275 (2010).

Coors, W. G A stoichiometric titration method for measuring galvanic hydrogen flux in ceramic hydrogen separation membranes. J. Membr. Sci. 458, 245–253 (2014).

Zeppieri, M., Villa, P. L., Verdone, N., Scarsella, M. & De Filippis, P. Kinetic of methane steam reforming reaction over nickel- and rhodium-based catalysts. Appl. Catal. A 387, 147–154 (2010).

Wang, B., Zhu, J. & Lin, Z. A theoretical framework for multiphysics modeling of methane fueled solid oxide fuel cell and analysis of low steam methane reforming kinetics. Appl. Energy 176, 1–11 (2016).

Overview of Electricity Production and Use in Europe (European Environment Agency, 2016).

Edwards, R., Larive, J.-F., Rickeard, D. & Weindorf, W. Well-To-Wheels Analysis of Future Automotive Fuels and Powertrains in the European Context, Well-to-Tank Report Version 4.a, JEC Well-to-Wheels Analysis (Joint Research Centre, 2014).

Cho, V. H., Hamilton, B. A. & Kuehn, N. J. Assessment of Hydrogen Production with CO 2 Capture Volume 1: Baseline State-of-the-Art Plants (National Energy Technology Laboratory, 2010).

Schjølberg, I. et al. Small-Scale Reformers for On-Site Hydrogen Supply (International Energy Agency-Hydrogen Implementing Agreement, 2012).

de Visser, E. et al. Dynamis CO2 quality recommendations. Int. J. Greenhouse Gas Control 2, 478–484 (2008).

Bertucciolo, L. et al. Development of Water Electrolysis in the European Union (Fuel Cells and Hydrogen Joint Undertaking, 2014).

Edwards, R. et al. Well-To-Wheels Analysis of Future Automotive Fuels and Powertrains in the European Context, Well-to-Wheels Report Version 4.a, JEC Well-to-Wheels Analysis (Joint Research Centre 2014).

Huss, A., Maas, H. & Hass, H. Well-to-Wheels Analysis of Future Automotive Fuels and Powertrains in the European Context, Tank-to-Wheels Report Version 4.0, JEC Technical Reports (Joint Research Centre, 2013).

[-]

This item appears in the following Collection(s)

Show full item record