Mostrar el registro sencillo del ítem
dc.contributor.author | Malerød-Fjeld, H. | es_ES |
dc.contributor.author | Clark, D. | es_ES |
dc.contributor.author | Yuste Tirados, Irene | es_ES |
dc.contributor.author | Zanón González, Raquel | es_ES |
dc.contributor.author | Catalán-Martínez, David | es_ES |
dc.contributor.author | Beeaff, D. | es_ES |
dc.contributor.author | Hernández Morejudo, Selene | es_ES |
dc.contributor.author | Vestre, P.K. | es_ES |
dc.contributor.author | Norby, T. | es_ES |
dc.contributor.author | Haugsrud, R. | es_ES |
dc.contributor.author | Serra Alfaro, José Manuel | es_ES |
dc.contributor.author | Kjølseth, C. | es_ES |
dc.date.accessioned | 2020-07-30T03:35:38Z | |
dc.date.available | 2020-07-30T03:35:38Z | |
dc.date.issued | 2017-12 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/148908 | |
dc.description.abstract | [EN] Conventional production of hydrogen requires large industrial plants to minimize energy losses and capital costs associated with steam reforming, water-gas shift, product separation and compression. Here we present a protonic membrane reformer (PMR) that produces high-purity hydrogen from steam methane reforming in a single-stage process with near-zero energy loss. We use a BaZrO3-based proton-conducting electrolyte deposited as a dense film on a porous Ni composite electrode with dual function as a reforming catalyst. At 800 degrees C, we achieve full methane conversion by removing 99% of the formed hydrogen, which is simultaneously compressed electrochemically up to 50 bar. A thermally balanced operation regime is achieved by coupling several thermo-chemical processes. Modelling of a small-scale (10 kg H-2 day-1) hydrogen plant reveals an overall energy efficiency of >87%. The results suggest that future declining electricity prices could make PMRs a competitive alternative for industrial-scale hydrogen plants integrating CO2 capture. | es_ES |
dc.description.sponsorship | This work was supported by the Research Council of Norway (grant 256264) and the Spanish Government (SEV-2016-0683 grant). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Nature Publishing Group | es_ES |
dc.relation.ispartof | Nature Energy | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Heterogeneous catalysis | es_ES |
dc.subject | Hydrogen storage | es_ES |
dc.subject | Natural gas | es_ES |
dc.title | Thermo-electrochemical production of compressed hydrogen from methane with near-zero energy loss | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1038/s41560-017-0029-4 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/RCN//256264/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química | es_ES |
dc.description.bibliographicCitation | Malerød-Fjeld, H.; Clark, D.; Yuste Tirados, I.; Zanón González, R.; Catalán-Martínez, D.; Beeaff, D.; Hernández Morejudo, S.... (2017). Thermo-electrochemical production of compressed hydrogen from methane with near-zero energy loss. Nature Energy. 2(12):923-931. https://doi.org/10.1038/s41560-017-0029-4 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1038/s41560-017-0029-4 | es_ES |
dc.description.upvformatpinicio | 923 | es_ES |
dc.description.upvformatpfin | 931 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 2 | es_ES |
dc.description.issue | 12 | es_ES |
dc.identifier.eissn | 2058-7546 | es_ES |
dc.relation.pasarela | S\346864 | es_ES |
dc.contributor.funder | Research Council of Norway | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Morejudo, S. H. et al. Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor. Science 353, 563–566 (2016). | es_ES |
dc.description.references | Chu, S. & Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012). | es_ES |
dc.description.references | Logan, B. E. & Elimelech, M. Membrane-based processes for sustainable power generation using water. Nature 488, 313–319 (2012). | es_ES |
dc.description.references | Rostrup-Nielsen, J. R. Catalysis and large-scale conversion of natural gas. Catal. Today 21, 257–267 (1994). | es_ES |
dc.description.references | Voss, C. Applications of pressure swing adsorption technology. Adsorption 11, 527–529 (2005). | es_ES |
dc.description.references | Gallucci, F., Fernandez, E., Corengia, P. & van Sint Annaland, M. Recent advances on membranes and membrane reactors for hydrogen production. Chem. Eng. Sci. 92, 40–66 (2013). | es_ES |
dc.description.references | Boeltken, T., Wunsch, A., Gietzelt, T., Pfeifer, P. & Dittmeyer, R. Ultra-compact microstructured methane steam reformer with integrated Palladium membrane for on-site production of pure hydrogen: Experimental demonstration. Int. J. Hydrogen Energy 39, 18058–18068 (2014). | es_ES |
dc.description.references | Al-Mufachi, N. A., Rees, N. V. & Steinberger-Wilkens, R. Hydrogen selective membranes: A review of palladium-based dense metal membranes. Renew. Sustainable Energy Rev. 47, 540–551 (2015). | es_ES |
dc.description.references | Sengodan, S. et al. Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells. Nat. Mater. 14, 205–209 (2015). | es_ES |
dc.description.references | Myung, J.-h, Neagu, D., Miller, D. N. & Irvine, J. T. S. Switching on electrocatalytic activity in solid oxide cells. Nature 537, 528–531 (2016). | es_ES |
dc.description.references | Iwahara, H., Uchida, H., Ono, K. & Ogaki, K. Proton conduction in sintered oxides based on BaCeO3. J. Electrochem. Soc. 135, 529–533 (1988). | es_ES |
dc.description.references | Hamakawa, S., Hibino, T. & Iwahara, H. Electrochemical methane coupling using proton conductors. J. Electrochem. Soc. 140, 459–462 (1993). | es_ES |
dc.description.references | Bonanos, N., Knight, K. S. & Ellis, B. Perovskite solid electrolytes: structure, transport properties and fuel cell applications. Solid State Ion. 79, 161–170 (1995). | es_ES |
dc.description.references | Norby, T. Solid-state protonic conductors: principles, properties, progress and prospects. Solid State Ion. 125, 1–11 (1999). | es_ES |
dc.description.references | Kreuer, K. D. On the development of proton conducting materials for technological applications. Solid State Ion. 97, 1–15 (1997). | es_ES |
dc.description.references | Kreuer, K. D. Aspects of the formation and mobility of protonic charge carriers and the stability of perovskite-type oxides. Solid State Ion. 125, 285–302 (1999). | es_ES |
dc.description.references | Kreuer, K. D. Proton-conducting oxides. Annu. Rev. Mater. Res. 33, 333–359 (2003). | es_ES |
dc.description.references | Tao, S. W. & Irvine, J. T. S. A stable, easily sintered proton-conducting oxide electrolyte for moderate-temperature fuel cells and electrolyzers. Adv. Mater. 18, 11581-1584 (2006). | es_ES |
dc.description.references | Wang, H., Peng, R., Wu, X., Hu, J. & Xia, C. Sintering behavior and conductivity study of yttrium-doped BaCeO3–BaZrO3 solid solutions using ZnO additives. J. Am. Ceram. Soc. 92, 2623–2629 (2009). | es_ES |
dc.description.references | Coors, W. G. in Advances in Ceramics—Synthesis and Characterization, Processing and Specific Applications (Ed. Sikalidis, C.) Ch. 22, 501–520 (InTech, UK, 2011) (2011). | es_ES |
dc.description.references | Manabe, R. et al. Surface protonics promotes catalysis. Sci. Rep. 6, 38007, (2016). | es_ES |
dc.description.references | Rohland, B., Eberle, K., Ströbel, R., Scholta, J. & Garche, J. Electrochemical hydrogen compressor. Electrochimica Acta 43, 3841–3846 (1998). | es_ES |
dc.description.references | Kochetova, N., Animitsa, I., Medvedev, D., Demin, A. & Tsiakaras, P. Recent activity in the development of proton-conducting oxides for high-temperature applications. RSC Adv. 6, 73222–73268 (2016). | es_ES |
dc.description.references | Yamazaki, Y. et al. Proton trapping in yttrium-doped barium zirconate. Nat. Mater. 12, 647–651 (2013). | es_ES |
dc.description.references | Kjølseth, C. et al. Space-charge theory applied to the grain boundary impedance of proton conducting BaZr0.9Y0.1O3-δ . Solid State Ion. 181, 268–275 (2010). | es_ES |
dc.description.references | Coors, W. G A stoichiometric titration method for measuring galvanic hydrogen flux in ceramic hydrogen separation membranes. J. Membr. Sci. 458, 245–253 (2014). | es_ES |
dc.description.references | Zeppieri, M., Villa, P. L., Verdone, N., Scarsella, M. & De Filippis, P. Kinetic of methane steam reforming reaction over nickel- and rhodium-based catalysts. Appl. Catal. A 387, 147–154 (2010). | es_ES |
dc.description.references | Wang, B., Zhu, J. & Lin, Z. A theoretical framework for multiphysics modeling of methane fueled solid oxide fuel cell and analysis of low steam methane reforming kinetics. Appl. Energy 176, 1–11 (2016). | es_ES |
dc.description.references | Overview of Electricity Production and Use in Europe (European Environment Agency, 2016). | es_ES |
dc.description.references | Edwards, R., Larive, J.-F., Rickeard, D. & Weindorf, W. Well-To-Wheels Analysis of Future Automotive Fuels and Powertrains in the European Context, Well-to-Tank Report Version 4.a, JEC Well-to-Wheels Analysis (Joint Research Centre, 2014). | es_ES |
dc.description.references | Cho, V. H., Hamilton, B. A. & Kuehn, N. J. Assessment of Hydrogen Production with CO 2 Capture Volume 1: Baseline State-of-the-Art Plants (National Energy Technology Laboratory, 2010). | es_ES |
dc.description.references | Schjølberg, I. et al. Small-Scale Reformers for On-Site Hydrogen Supply (International Energy Agency-Hydrogen Implementing Agreement, 2012). | es_ES |
dc.description.references | de Visser, E. et al. Dynamis CO2 quality recommendations. Int. J. Greenhouse Gas Control 2, 478–484 (2008). | es_ES |
dc.description.references | Bertucciolo, L. et al. Development of Water Electrolysis in the European Union (Fuel Cells and Hydrogen Joint Undertaking, 2014). | es_ES |
dc.description.references | Edwards, R. et al. Well-To-Wheels Analysis of Future Automotive Fuels and Powertrains in the European Context, Well-to-Wheels Report Version 4.a, JEC Well-to-Wheels Analysis (Joint Research Centre 2014). | es_ES |
dc.description.references | Huss, A., Maas, H. & Hass, H. Well-to-Wheels Analysis of Future Automotive Fuels and Powertrains in the European Context, Tank-to-Wheels Report Version 4.0, JEC Technical Reports (Joint Research Centre, 2013). | es_ES |