- -

Design and Validation of a 150 MHz HFFQCM Sensor for Bio-Sensing Applications

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Design and Validation of a 150 MHz HFFQCM Sensor for Bio-Sensing Applications

Show full item record

Fernández Díaz, R.; García Molla, P.; García, M.; García Narbón, JV.; Jiménez Jiménez, Y.; Arnau Vives, A. (2017). Design and Validation of a 150 MHz HFFQCM Sensor for Bio-Sensing Applications. Sensors. 17(9):1-13. https://doi.org/10.3390/s17092057

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/148911

Files in this item

Item Metadata

Title: Design and Validation of a 150 MHz HFFQCM Sensor for Bio-Sensing Applications
Author: FERNÁNDEZ DÍAZ, ROMÁN García Molla, Pablo García, María García Narbón, José Vicente Jiménez Jiménez, Yolanda Arnau Vives, Antonio
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Issued date:
Abstract:
[EN] Acoustic wave resonators have become suitable devices for a broad range of sensing applications due to their sensitivity, low cost, and integration capability, which are all factors that meet the requirements for the ...[+]
Subjects: HFF-QCM(high fundamental frequency quartz crystalmicrobalance) , Finite elementmethod (FEM) , Flow cell,biosensor , PoC (point of care) , MQCM(monolithic quartz crystal microbalance)
Copyrigths: Reconocimiento (by)
Source:
Sensors. (eissn: 1424-8220 )
DOI: 10.3390/s17092057
Publisher:
MDPI AG
Publisher version: https://doi.org/10.3390/s17092057
Project ID:
info:eu-repo/grantAgreement/EC/H2020/687785/EU/Reliable Novel Liquid Biopsy technology for early detection of colorectal cancer/
Thanks:
This work was funded by the European Commission Horizon 2020 Programme under Grant Agreement number ICT-28-2015/687785-LIQBIOPSENS (Reliable Liquid Biopsy technology for early detection of colorectal cancer).
Type: Artículo

References

Soper, S. A., Brown, K., Ellington, A., Frazier, B., Garcia-Manero, G., Gau, V., … Wilson, D. (2006). Point-of-care biosensor systems for cancer diagnostics/prognostics. Biosensors and Bioelectronics, 21(10), 1932-1942. doi:10.1016/j.bios.2006.01.006

Gubala, V., Harris, L. F., Ricco, A. J., Tan, M. X., & Williams, D. E. (2011). Point of Care Diagnostics: Status and Future. Analytical Chemistry, 84(2), 487-515. doi:10.1021/ac2030199

Sauerbrey, G. (1959). Verwendung von Schwingquarzen zur W�gung d�nner Schichten und zur Mikrow�gung. Zeitschrift f�r Physik, 155(2), 206-222. doi:10.1007/bf01337937 [+]
Soper, S. A., Brown, K., Ellington, A., Frazier, B., Garcia-Manero, G., Gau, V., … Wilson, D. (2006). Point-of-care biosensor systems for cancer diagnostics/prognostics. Biosensors and Bioelectronics, 21(10), 1932-1942. doi:10.1016/j.bios.2006.01.006

Gubala, V., Harris, L. F., Ricco, A. J., Tan, M. X., & Williams, D. E. (2011). Point of Care Diagnostics: Status and Future. Analytical Chemistry, 84(2), 487-515. doi:10.1021/ac2030199

Sauerbrey, G. (1959). Verwendung von Schwingquarzen zur W�gung d�nner Schichten und zur Mikrow�gung. Zeitschrift f�r Physik, 155(2), 206-222. doi:10.1007/bf01337937

Tsortos, A., Papadakis, G., & Gizeli, E. (2008). Shear acoustic wave biosensor for detecting DNA intrinsic viscosity and conformation: A study with QCM-D. Biosensors and Bioelectronics, 24(4), 836-841. doi:10.1016/j.bios.2008.07.006

Tuantranont, A., Wisitsora-at, A., Sritongkham, P., & Jaruwongrungsee, K. (2011). A review of monolithic multichannel quartz crystal microbalance: A review. Analytica Chimica Acta, 687(2), 114-128. doi:10.1016/j.aca.2010.12.022

Tao, W., Lin, P., Ai, Y., Wang, H., Ke, S., & Zeng, X. (2016). Multichannel quartz crystal microbalance array: Fabrication, evaluation, application in biomarker detection. Analytical Biochemistry, 494, 85-92. doi:10.1016/j.ab.2015.11.001

Abe, T., & Esashi, M. (2000). One-chip multichannel quartz crystal microbalance (QCM) fabricated by Deep RIE. Sensors and Actuators A: Physical, 82(1-3), 139-143. doi:10.1016/s0924-4247(99)00330-1

Jaruwongrungsee, K., Waiwijit, U., Wisitsoraat, A., Sangworasil, M., Pintavirooj, C., & Tuantranont, A. (2015). Real-time multianalyte biosensors based on interference-free multichannel monolithic quartz crystal microbalance. Biosensors and Bioelectronics, 67, 576-581. doi:10.1016/j.bios.2014.09.047

Hung, V. N., Abe, T., Minh, P. N., & Esashi, M. (2002). Miniaturized, highly sensitive single-chip multichannel quartz-crystal microbalance. Applied Physics Letters, 81(26), 5069-5071. doi:10.1063/1.1532750

Ping Kao, Doerner, S., Schneider, T., Allara, D., Hauptmann, P., & Tadigadapa, S. (2009). A Micromachined Quartz Resonator Array for Biosensing Applications. Journal of Microelectromechanical Systems, 18(3), 522-530. doi:10.1109/jmems.2009.2015498

Liang, J., Huang, J., Zhang, T., Zhang, J., Li, X., & Ueda, T. (2013). An Experimental Study on Fabricating an Inverted Mesa-Type Quartz Crystal Resonator Using a Cheap Wet Etching Process. Sensors, 13(9), 12140-12148. doi:10.3390/s130912140

Zimmermann, B., Lucklum, R., Hauptmann, P., Rabe, J., & Büttgenbach, S. (2001). Electrical characterisation of high-frequency thickness-shear-mode resonators by impedance analysis. Sensors and Actuators B: Chemical, 76(1-3), 47-57. doi:10.1016/s0925-4005(01)00567-6

Lubczyk, D., Siering, C., Lörgen, J., Shifrina, Z. B., Müllen, K., & Waldvogel, S. R. (2010). Simple and sensitive online detection of triacetone triperoxide explosive. Sensors and Actuators B: Chemical, 143(2), 561-566. doi:10.1016/j.snb.2009.09.061

Brutschy, M., Schneider, M. W., Mastalerz, M., & Waldvogel, S. R. (2012). Porous Organic Cage Compounds as Highly Potent Affinity Materials for Sensing by Quartz Crystal Microbalances. Advanced Materials, 24(45), 6049-6052. doi:10.1002/adma.201202786

Brutschy, M., Schneider, M. W., Mastalerz, M., & Waldvogel, S. R. (2013). Direct gravimetric sensing of GBL by a molecular recognition process in organic cage compounds. Chemical Communications, 49(75), 8398. doi:10.1039/c3cc43829e

Uttenthaler, E., Schräml, M., Mandel, J., & Drost, S. (2001). Ultrasensitive quartz crystal microbalance sensors for detection of M13-Phages in liquids. Biosensors and Bioelectronics, 16(9-12), 735-743. doi:10.1016/s0956-5663(01)00220-2

March, C., García, J. V., Sánchez, Á., Arnau, A., Jiménez, Y., García, P., … Montoya, Á. (2015). High-frequency phase shift measurement greatly enhances the sensitivity of QCM immunosensors. Biosensors and Bioelectronics, 65, 1-8. doi:10.1016/j.bios.2014.10.001

Sagmeister, B. P., Graz, I. M., Schwödiauer, R., Gruber, H., & Bauer, S. (2009). User-friendly, miniature biosensor flow cell for fragile high fundamental frequency quartz crystal resonators. Biosensors and Bioelectronics, 24(8), 2643-2648. doi:10.1016/j.bios.2009.01.023

Abe, T., Hung, V., & Esashi, M. (2006). Inverted mesa-type quartz crystal resonators fabricated by deep-reactive ion etching. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 53(7), 1234-1236. doi:10.1109/tuffc.2006.1665070

Rocha-Gaso, M.-I., March-Iborra, C., Montoya-Baides, Á., & Arnau-Vives, A. (2009). Surface Generated Acoustic Wave Biosensors for the Detection of Pathogens: A Review. Sensors, 9(7), 5740-5769. doi:10.3390/s90705740

García, J. V., Rocha, M. I., March, C., García, P., Francis, L. A., Montoya, A., … Jimenez, Y. (2014). Love Mode Surface Acoustic Wave and High Fundamental Frequency Quartz Crystal Microbalance Immunosensors for the Detection of Carbaryl Pesticide. Procedia Engineering, 87, 759-762. doi:10.1016/j.proeng.2014.11.649

Shockley, W., Curran, D. R., & Koneval, D. J. (1967). Trapped‐Energy Modes in Quartz Filter Crystals. The Journal of the Acoustical Society of America, 41(4B), 981-993. doi:10.1121/1.1910453

Shen, F., Lu, P., O’Shea, S. J., & Lee, K. H. (2004). Frequency coupling and energy trapping in mesa-shaped multichannel quartz crystal microbalances. Sensors and Actuators A: Physical, 111(2-3), 180-187. doi:10.1016/j.sna.2003.10.017

Beaver, W. D. (1968). Analysis of Elastically Coupled Piezoelectric Resonators. The Journal of the Acoustical Society of America, 43(5), 972-981. doi:10.1121/1.1910967

Sheahan, D. F. (1970). An improved resonance equation for AT-cut quartz crystals. Proceedings of the IEEE, 58(2), 260-261. doi:10.1109/proc.1970.7607

Wessels, A., Klöckner, B., Siering, C., & Waldvogel, S. (2013). Practical Strategies for Stable Operation of HFF-QCM in Continuous Air Flow. Sensors, 13(9), 12012-12029. doi:10.3390/s130912012

Lu, F., Lee, H. P., Lu, P., & Lim, S. P. (2005). Finite element analysis of interference for the laterally coupled quartz crystal microbalances. Sensors and Actuators A: Physical, 119(1), 90-99. doi:10.1016/j.sna.2004.09.013

Mindlin, R. D., & Lee, P. C. Y. (1966). Thickness-shear and flexural vibrations of partially plated, crystal plates. International Journal of Solids and Structures, 2(1), 125-139. doi:10.1016/0020-7683(66)90010-2

Lin, Z., Yip, C. M., Joseph, I. S., & Ward, M. D. (1993). Operation of an ultrasensitive 30-MHz quartz crystal microbalance in liquids. Analytical Chemistry, 65(11), 1546-1551. doi:10.1021/ac00059a011

Ballato, A., & Gualtieri, J. G. (1994). Advances in high-Q piezoelectric resonator materials and devices. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 41(6), 834-844. doi:10.1109/58.330264

Montagut, Y. J., García, J. V., Jiménez, Y., March, C., Montoya, A., & Arnau, A. (2011). Frequency-shift vs phase-shift characterization of in-liquid quartz crystal microbalance applications. Review of Scientific Instruments, 82(6), 064702. doi:10.1063/1.3598340

LI, J., WU, Z.-Y., XIAO, L.-T., ZENG, G.-M., HUANG, G.-H., SHEN, G.-L., & YU, R.-Q. (2002). A Novel Piezoelectric Biosensor for the Detection of Phytohormone .BETA.-Indole Acetic Acid. Analytical Sciences, 18(4), 403-407. doi:10.2116/analsci.18.403

Kengne-Momo, R. P., Jeyachandran, Y. L., Assaf, A., Esnault, C., Daniel, P., Pilard, J. F., … Thouand, G. (2010). A simple method of surface functionalisation for immuno-specific immobilisation of proteins. Analytical and Bioanalytical Chemistry, 398(3), 1249-1255. doi:10.1007/s00216-010-4032-x

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record