- -

Design and Validation of a 150 MHz HFFQCM Sensor for Bio-Sensing Applications

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Design and Validation of a 150 MHz HFFQCM Sensor for Bio-Sensing Applications

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author FERNÁNDEZ DÍAZ, ROMÁN es_ES
dc.contributor.author García Molla, Pablo es_ES
dc.contributor.author García, María es_ES
dc.contributor.author García Narbón, José Vicente es_ES
dc.contributor.author Jiménez Jiménez, Yolanda es_ES
dc.contributor.author Arnau Vives, Antonio es_ES
dc.date.accessioned 2020-07-30T03:35:46Z
dc.date.available 2020-07-30T03:35:46Z
dc.date.issued 2017-09-08 es_ES
dc.identifier.uri http://hdl.handle.net/10251/148911
dc.description.abstract [EN] Acoustic wave resonators have become suitable devices for a broad range of sensing applications due to their sensitivity, low cost, and integration capability, which are all factors that meet the requirements for the resonators to be used as sensing elements for portable point of care (PoC) platforms. In this work, the design, characterization, and validation of a 150 MHz high fundamental frequency quartz crystal microbalance (HFF-QCM) sensor for bio-sensing applications are introduced. Finite element method (FEM) simulations of the proposed design are in good agreement with the electrical characterization of the manufactured resonators. The sensor is also validated for bio-sensing applications. For this purpose, a specific sensor cell was designed and manufactured that addresses the critical requirements associated with this type of sensor and application. Due to the small sensing area and the sensor's fragility, these requirements include a low-volume flow chamber in the nanoliter range, and a system approach that provides the appropriate pressure control for assuring liquid confinement while maintaining the integrity of the sensor with a good base line stability and easy sensor replacement. The sensor characteristics make it suitable for consideration as the elemental part of a sensor matrix in a multichannel platform for point of care applications. es_ES
dc.description.sponsorship This work was funded by the European Commission Horizon 2020 Programme under Grant Agreement number ICT-28-2015/687785-LIQBIOPSENS (Reliable Liquid Biopsy technology for early detection of colorectal cancer). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject HFF-QCM(high fundamental frequency quartz crystalmicrobalance) es_ES
dc.subject Finite elementmethod (FEM) es_ES
dc.subject Flow cell,biosensor es_ES
dc.subject PoC (point of care) es_ES
dc.subject MQCM(monolithic quartz crystal microbalance) es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Design and Validation of a 150 MHz HFFQCM Sensor for Bio-Sensing Applications es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s17092057 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/687785/EU/Reliable Novel Liquid Biopsy technology for early detection of colorectal cancer/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Fernández Díaz, R.; García Molla, P.; García, M.; García Narbón, JV.; Jiménez Jiménez, Y.; Arnau Vives, A. (2017). Design and Validation of a 150 MHz HFFQCM Sensor for Bio-Sensing Applications. Sensors. 17(9):1-13. https://doi.org/10.3390/s17092057 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/s17092057 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.description.issue 9 es_ES
dc.identifier.eissn 1424-8220 es_ES
dc.identifier.pmid 28885551 es_ES
dc.identifier.pmcid PMC5621382 es_ES
dc.relation.pasarela S\355418 es_ES
dc.description.references Soper, S. A., Brown, K., Ellington, A., Frazier, B., Garcia-Manero, G., Gau, V., … Wilson, D. (2006). Point-of-care biosensor systems for cancer diagnostics/prognostics. Biosensors and Bioelectronics, 21(10), 1932-1942. doi:10.1016/j.bios.2006.01.006 es_ES
dc.description.references Gubala, V., Harris, L. F., Ricco, A. J., Tan, M. X., & Williams, D. E. (2011). Point of Care Diagnostics: Status and Future. Analytical Chemistry, 84(2), 487-515. doi:10.1021/ac2030199 es_ES
dc.description.references Sauerbrey, G. (1959). Verwendung von Schwingquarzen zur W�gung d�nner Schichten und zur Mikrow�gung. Zeitschrift f�r Physik, 155(2), 206-222. doi:10.1007/bf01337937 es_ES
dc.description.references Tsortos, A., Papadakis, G., & Gizeli, E. (2008). Shear acoustic wave biosensor for detecting DNA intrinsic viscosity and conformation: A study with QCM-D. Biosensors and Bioelectronics, 24(4), 836-841. doi:10.1016/j.bios.2008.07.006 es_ES
dc.description.references Tuantranont, A., Wisitsora-at, A., Sritongkham, P., & Jaruwongrungsee, K. (2011). A review of monolithic multichannel quartz crystal microbalance: A review. Analytica Chimica Acta, 687(2), 114-128. doi:10.1016/j.aca.2010.12.022 es_ES
dc.description.references Tao, W., Lin, P., Ai, Y., Wang, H., Ke, S., & Zeng, X. (2016). Multichannel quartz crystal microbalance array: Fabrication, evaluation, application in biomarker detection. Analytical Biochemistry, 494, 85-92. doi:10.1016/j.ab.2015.11.001 es_ES
dc.description.references Abe, T., & Esashi, M. (2000). One-chip multichannel quartz crystal microbalance (QCM) fabricated by Deep RIE. Sensors and Actuators A: Physical, 82(1-3), 139-143. doi:10.1016/s0924-4247(99)00330-1 es_ES
dc.description.references Jaruwongrungsee, K., Waiwijit, U., Wisitsoraat, A., Sangworasil, M., Pintavirooj, C., & Tuantranont, A. (2015). Real-time multianalyte biosensors based on interference-free multichannel monolithic quartz crystal microbalance. Biosensors and Bioelectronics, 67, 576-581. doi:10.1016/j.bios.2014.09.047 es_ES
dc.description.references Hung, V. N., Abe, T., Minh, P. N., & Esashi, M. (2002). Miniaturized, highly sensitive single-chip multichannel quartz-crystal microbalance. Applied Physics Letters, 81(26), 5069-5071. doi:10.1063/1.1532750 es_ES
dc.description.references Ping Kao, Doerner, S., Schneider, T., Allara, D., Hauptmann, P., & Tadigadapa, S. (2009). A Micromachined Quartz Resonator Array for Biosensing Applications. Journal of Microelectromechanical Systems, 18(3), 522-530. doi:10.1109/jmems.2009.2015498 es_ES
dc.description.references Liang, J., Huang, J., Zhang, T., Zhang, J., Li, X., & Ueda, T. (2013). An Experimental Study on Fabricating an Inverted Mesa-Type Quartz Crystal Resonator Using a Cheap Wet Etching Process. Sensors, 13(9), 12140-12148. doi:10.3390/s130912140 es_ES
dc.description.references Zimmermann, B., Lucklum, R., Hauptmann, P., Rabe, J., & Büttgenbach, S. (2001). Electrical characterisation of high-frequency thickness-shear-mode resonators by impedance analysis. Sensors and Actuators B: Chemical, 76(1-3), 47-57. doi:10.1016/s0925-4005(01)00567-6 es_ES
dc.description.references Lubczyk, D., Siering, C., Lörgen, J., Shifrina, Z. B., Müllen, K., & Waldvogel, S. R. (2010). Simple and sensitive online detection of triacetone triperoxide explosive. Sensors and Actuators B: Chemical, 143(2), 561-566. doi:10.1016/j.snb.2009.09.061 es_ES
dc.description.references Brutschy, M., Schneider, M. W., Mastalerz, M., & Waldvogel, S. R. (2012). Porous Organic Cage Compounds as Highly Potent Affinity Materials for Sensing by Quartz Crystal Microbalances. Advanced Materials, 24(45), 6049-6052. doi:10.1002/adma.201202786 es_ES
dc.description.references Brutschy, M., Schneider, M. W., Mastalerz, M., & Waldvogel, S. R. (2013). Direct gravimetric sensing of GBL by a molecular recognition process in organic cage compounds. Chemical Communications, 49(75), 8398. doi:10.1039/c3cc43829e es_ES
dc.description.references Uttenthaler, E., Schräml, M., Mandel, J., & Drost, S. (2001). Ultrasensitive quartz crystal microbalance sensors for detection of M13-Phages in liquids. Biosensors and Bioelectronics, 16(9-12), 735-743. doi:10.1016/s0956-5663(01)00220-2 es_ES
dc.description.references March, C., García, J. V., Sánchez, Á., Arnau, A., Jiménez, Y., García, P., … Montoya, Á. (2015). High-frequency phase shift measurement greatly enhances the sensitivity of QCM immunosensors. Biosensors and Bioelectronics, 65, 1-8. doi:10.1016/j.bios.2014.10.001 es_ES
dc.description.references Sagmeister, B. P., Graz, I. M., Schwödiauer, R., Gruber, H., & Bauer, S. (2009). User-friendly, miniature biosensor flow cell for fragile high fundamental frequency quartz crystal resonators. Biosensors and Bioelectronics, 24(8), 2643-2648. doi:10.1016/j.bios.2009.01.023 es_ES
dc.description.references Abe, T., Hung, V., & Esashi, M. (2006). Inverted mesa-type quartz crystal resonators fabricated by deep-reactive ion etching. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 53(7), 1234-1236. doi:10.1109/tuffc.2006.1665070 es_ES
dc.description.references Rocha-Gaso, M.-I., March-Iborra, C., Montoya-Baides, Á., & Arnau-Vives, A. (2009). Surface Generated Acoustic Wave Biosensors for the Detection of Pathogens: A Review. Sensors, 9(7), 5740-5769. doi:10.3390/s90705740 es_ES
dc.description.references García, J. V., Rocha, M. I., March, C., García, P., Francis, L. A., Montoya, A., … Jimenez, Y. (2014). Love Mode Surface Acoustic Wave and High Fundamental Frequency Quartz Crystal Microbalance Immunosensors for the Detection of Carbaryl Pesticide. Procedia Engineering, 87, 759-762. doi:10.1016/j.proeng.2014.11.649 es_ES
dc.description.references Shockley, W., Curran, D. R., & Koneval, D. J. (1967). Trapped‐Energy Modes in Quartz Filter Crystals. The Journal of the Acoustical Society of America, 41(4B), 981-993. doi:10.1121/1.1910453 es_ES
dc.description.references Shen, F., Lu, P., O’Shea, S. J., & Lee, K. H. (2004). Frequency coupling and energy trapping in mesa-shaped multichannel quartz crystal microbalances. Sensors and Actuators A: Physical, 111(2-3), 180-187. doi:10.1016/j.sna.2003.10.017 es_ES
dc.description.references Beaver, W. D. (1968). Analysis of Elastically Coupled Piezoelectric Resonators. The Journal of the Acoustical Society of America, 43(5), 972-981. doi:10.1121/1.1910967 es_ES
dc.description.references Sheahan, D. F. (1970). An improved resonance equation for AT-cut quartz crystals. Proceedings of the IEEE, 58(2), 260-261. doi:10.1109/proc.1970.7607 es_ES
dc.description.references Wessels, A., Klöckner, B., Siering, C., & Waldvogel, S. (2013). Practical Strategies for Stable Operation of HFF-QCM in Continuous Air Flow. Sensors, 13(9), 12012-12029. doi:10.3390/s130912012 es_ES
dc.description.references Lu, F., Lee, H. P., Lu, P., & Lim, S. P. (2005). Finite element analysis of interference for the laterally coupled quartz crystal microbalances. Sensors and Actuators A: Physical, 119(1), 90-99. doi:10.1016/j.sna.2004.09.013 es_ES
dc.description.references Mindlin, R. D., & Lee, P. C. Y. (1966). Thickness-shear and flexural vibrations of partially plated, crystal plates. International Journal of Solids and Structures, 2(1), 125-139. doi:10.1016/0020-7683(66)90010-2 es_ES
dc.description.references Lin, Z., Yip, C. M., Joseph, I. S., & Ward, M. D. (1993). Operation of an ultrasensitive 30-MHz quartz crystal microbalance in liquids. Analytical Chemistry, 65(11), 1546-1551. doi:10.1021/ac00059a011 es_ES
dc.description.references Ballato, A., & Gualtieri, J. G. (1994). Advances in high-Q piezoelectric resonator materials and devices. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 41(6), 834-844. doi:10.1109/58.330264 es_ES
dc.description.references Montagut, Y. J., García, J. V., Jiménez, Y., March, C., Montoya, A., & Arnau, A. (2011). Frequency-shift vs phase-shift characterization of in-liquid quartz crystal microbalance applications. Review of Scientific Instruments, 82(6), 064702. doi:10.1063/1.3598340 es_ES
dc.description.references LI, J., WU, Z.-Y., XIAO, L.-T., ZENG, G.-M., HUANG, G.-H., SHEN, G.-L., & YU, R.-Q. (2002). A Novel Piezoelectric Biosensor for the Detection of Phytohormone .BETA.-Indole Acetic Acid. Analytical Sciences, 18(4), 403-407. doi:10.2116/analsci.18.403 es_ES
dc.description.references Kengne-Momo, R. P., Jeyachandran, Y. L., Assaf, A., Esnault, C., Daniel, P., Pilard, J. F., … Thouand, G. (2010). A simple method of surface functionalisation for immuno-specific immobilisation of proteins. Analytical and Bioanalytical Chemistry, 398(3), 1249-1255. doi:10.1007/s00216-010-4032-x es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem