- -

Combining content analysis and neural networks to analyze discussion topics in online comments about organic food

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Combining content analysis and neural networks to analyze discussion topics in online comments about organic food

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Danner, Hannah es_ES
dc.contributor.author Hagerer, Gerhard es_ES
dc.contributor.author Kasischke, Florian es_ES
dc.contributor.author Groh, Georg es_ES
dc.date.accessioned 2020-07-30T11:47:24Z
dc.date.available 2020-07-30T11:47:24Z
dc.date.issued 2020-05-14
dc.identifier.isbn 9788490488324
dc.identifier.uri http://hdl.handle.net/10251/149000
dc.description.abstract [EN] Consumers increasingly share their opinions about products in social media. However, the analysis of this user-generated content is limited either to small, in-depth qualitative analyses or to larger but often more superficial analyses based on word frequencies. Using the example of online comments about organic food, we investigate the relationship between qualitative analyses and latest deep neural networks in three steps. First, a qualitative content analysis defines a class system of opinions. Second, a pre-trained neural network, the Universal Sentence Encoder, analyzes semantic features for each class. Third, we show by manual inspection and descriptive statistics that these features match with the given class structure from our qualitative study. We conclude that semantic features from deep pre-trained neural networks have the potential to serve for the analysis of larger data sets, in our case on organic food. We exemplify a way to scale up sample size while maintaining the detail of class systems provided by qualitative content analyses. As the USE is pretrained on many domains, it can be applied to different domains than organic food and support consumer and public opinion researchers as well as marketing practitioners in further uncovering the potential of insights from user-generated content. es_ES
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Web data es_ES
dc.subject Internet data es_ES
dc.subject Big data es_ES
dc.subject Qca es_ES
dc.subject Pls es_ES
dc.subject Sem es_ES
dc.subject Conference es_ES
dc.subject Deep neural networks es_ES
dc.subject Natural language processing es_ES
dc.subject Consumer research es_ES
dc.subject Content analysis es_ES
dc.subject Social media es_ES
dc.subject Organic food es_ES
dc.title Combining content analysis and neural networks to analyze discussion topics in online comments about organic food es_ES
dc.type Capítulo de libro es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.4995/CARMA2020.2020.11632
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Danner, H.; Hagerer, G.; Kasischke, F.; Groh, G. (2020). Combining content analysis and neural networks to analyze discussion topics in online comments about organic food. Editorial Universitat Politècnica de València. 211-219. https://doi.org/10.4995/CARMA2020.2020.11632 es_ES
dc.description.accrualMethod OCS es_ES
dc.relation.conferencename CARMA 2020 - 3rd International Conference on Advanced Research Methods and Analytics es_ES
dc.relation.conferencedate Julio 08-09,2020 es_ES
dc.relation.conferenceplace Valencia, Spain es_ES
dc.relation.publisherversion http://ocs.editorial.upv.es/index.php/CARMA/CARMA2020/paper/view/11632 es_ES
dc.description.upvformatpinicio 211 es_ES
dc.description.upvformatpfin 219 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela OCS\11632 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem