- -

On the supersoluble hypercentre of a finite group

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On the supersoluble hypercentre of a finite group

Mostrar el registro completo del ítem

Miao, L.; Ballester-Bolinches, A.; Esteban Romero, R.; Li, Y. (2017). On the supersoluble hypercentre of a finite group. Monatshefte für Mathematik. 184(4):641-648. https://doi.org/10.1007/s00605-016-0987-9

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/149078

Ficheros en el ítem

Metadatos del ítem

Título: On the supersoluble hypercentre of a finite group
Autor: Miao, Liyun Ballester-Bolinches, Adolfo Esteban Romero, Ramón Li, Yangming
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] We give some sufficient conditions for a normal p-subgroup P of a finite group G to have every G-chief factor below it cyclic. The S-permutability of some p-subgroups of O^p(G)plays an important role. Some known results ...[+]
Palabras clave: Finite group , P-supersoluble group , S-semipermutable subgroup
Derechos de uso: Reserva de todos los derechos
Fuente:
Monatshefte für Mathematik. (issn: 0026-9255 )
DOI: 10.1007/s00605-016-0987-9
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s00605-016-0987-9
Código del Proyecto:
info:eu-repo/grantAgreement/Natural Science Foundation of Guangdong Province//2015A030313791/
info:eu-repo/grantAgreement/MINECO//MTM2014-54707-C3-1-P/ES/PROPIEDADES ARITMETICAS Y ESTRUCTURALES DE GRUPOS Y SEMIGRUPOS I/
info:eu-repo/grantAgreement/NSFC//11271085/
Agradecimientos:
A. Ballester-Bolinches and R. Esteban-Romero have been supported by the Grant MTM2014-54707-C3-1-P from the Ministerio de Economia y Competitividad, Spain, and FEDER, European Union. A. Ballester-Bolinches and Y. Li have ...[+]
Tipo: Artículo

References

Ballester-Bolinches, A., Esteban-Romero, R., Asaad, M.: Products of finite groups. In: de Gruyter Expositions in Mathematics, vol. 53. Walter de Gruyter, Berlin (2010). doi: 10.1515/9783110220612

Ballester-Bolinches, A., Esteban-Romero, R., Qiao, S.H.: A note on a result of Guo and Isaacs about $$p$$ p -supersolubility of finite groups. Arch. Math. (Basel) 106, 501–506 (2016). doi: 10.1007/s00013-016-0901-7

Berkovich, Y., Isaacs, I.M.: $$p$$ p -Groups stabilizing certain subgroups. J. Algebra 414, 82–94 (2014). doi: 10.1016/j.jalgebra.2014.04.026 [+]
Ballester-Bolinches, A., Esteban-Romero, R., Asaad, M.: Products of finite groups. In: de Gruyter Expositions in Mathematics, vol. 53. Walter de Gruyter, Berlin (2010). doi: 10.1515/9783110220612

Ballester-Bolinches, A., Esteban-Romero, R., Qiao, S.H.: A note on a result of Guo and Isaacs about $$p$$ p -supersolubility of finite groups. Arch. Math. (Basel) 106, 501–506 (2016). doi: 10.1007/s00013-016-0901-7

Berkovich, Y., Isaacs, I.M.: $$p$$ p -Groups stabilizing certain subgroups. J. Algebra 414, 82–94 (2014). doi: 10.1016/j.jalgebra.2014.04.026

Chen, X., Guo, W., Skiba, A.N.: Some conditions under which a finite group belongs to a Baer-local formation. Commun. Algebra 42(10), 4188–4203 (2014). doi: 10.1080/00927872.2013.806519

Doerk, K., Hawkes, T.: Finite soluble groups. In: De Gruyter Expositions in Mathematics, vol. 4. Walter de Gruyter, Berlin (1992). doi: 10.1515/9783110870138

Gorenstein, D.: Finite Groups. Chelsea, New York (1980)

Guo, Y., Isaacs, I.M.: Conditions on $$p$$ p -supersolvability. Arch. Math. (Basel) 105, 215–222 (2015). doi: 10.1007/s00013-015-0803-0

Huppert, B.: Endliche Gruppen I. In: Grund. Math. Wiss., vol. 134. Springer, Berlin (1967)

Isaacs, I.M.: Semipermutable $$\pi $$ π -subgroups. Arch. Math. (Basel) 102, 1–6 (2014). doi: 10.1007/s00013-013-0604-2

Li, Y., Qiao, S., Su, N., Wang, Y.: On weakly $$s$$ s -semipermutable subgroups of finite groups. J. Algebra 371, 250–261 (2012). doi: 10.1016/j.jalgebra.2012.06.025

Su, N., Li, Y., Wang, Y.: The weakly $$s$$ s -supplemented property of finite groups. Chin. J. Contemp. Math. 35(4), 1–12 (2014). doi: 10.16205/j.cnki.cama.2015.0010

Wang, L., Wang, Y.: On $$s$$ s -subgroups of finite groups. Commun. Algebra 34, 143–149 (2006). doi: 10.1080/00927870500346081

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem