- -

Triangles in the graph of conjugacy classes of normal subgroups

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Triangles in the graph of conjugacy classes of normal subgroups

Mostrar el registro completo del ítem

Beltrán, A.; Felipe Román, MJ.; Melchor, C. (2017). Triangles in the graph of conjugacy classes of normal subgroups. Monatshefte für Mathematik. 182(1):5-21. https://doi.org/10.1007/S00605-015-0866-9

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/149080

Ficheros en el ítem

Metadatos del ítem

Título: Triangles in the graph of conjugacy classes of normal subgroups
Autor: Beltrán, Antonio Felipe Román, María Josefa Melchor, Carmen
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] Let G be a finite group and N a normal subgroup of G. We determine the structure of N when the graph G(N), which is the graph associated to the conjugacy classes of G contained in N, has no triangles and when the graph ...[+]
Palabras clave: Finite groups , Conjugacy classes , Normal subgroups , Graphs
Derechos de uso: Reserva de todos los derechos
Fuente:
Monatshefte für Mathematik. (issn: 0026-9255 )
DOI: 10.1007/S00605-015-0866-9
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/S00605-015-0866-9
Código del Proyecto:
info:eu-repo/grantAgreement/UJI//P1-1B2015-77/
info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2015%2F011/ES/Caracteres y clases de conjugación de grupos finitos II/
Agradecimientos:
The research of the first and second authors is supported by the Valencian Government, Proyecto PROMETEOII/2015/011. The first and the third authors are also partially supported by Universitat Jaume I, Grant P11B2015-77.
Tipo: Artículo

References

Bertram, E.A., Herzog, M., Mann, A.: On a graph related to conjugacy classes of groups. Bull. London Math. Soc. 22(6), 569-575 (1990)

Beltrán, A., Felipe, M.J., Melchor, C.: Graphs associated to conjugacy classes of normal subgroups in finite groups. J. Algebra 443, 335-348 (2015)

Camina, A.R.: Arithmetical conditions on the conjugacy class numbers of a finite group. J. London Math. Soc. 2(5), 127-132 (1972) [+]
Bertram, E.A., Herzog, M., Mann, A.: On a graph related to conjugacy classes of groups. Bull. London Math. Soc. 22(6), 569-575 (1990)

Beltrán, A., Felipe, M.J., Melchor, C.: Graphs associated to conjugacy classes of normal subgroups in finite groups. J. Algebra 443, 335-348 (2015)

Camina, A.R.: Arithmetical conditions on the conjugacy class numbers of a finite group. J. London Math. Soc. 2(5), 127-132 (1972)

Deaconescu, M.: Classification of finite groups with all elements of prime order. Proc. Am. Math. Soc. 106(3), 625-629 (1989)

Doerk, K., Hawkes, T.: Finite soluble groups. de Gruyter Expositions in Mathematics, vol. 4. Walter de Gruyter, Berlin (1992)

Fang, M., Zhang, P.: Finite groups with graphs containing no triangles. J. Algebra 264(2), 613-619 (2003)

Higman, G.: Finite groups in which every element has prime power order. J. London Math. Soc. 32, 335-342 (1957)

Manz, O., Wolf, T.R.: Representations of solvable groups. Cambridge Univ. Press, Cambridge (1993)

Riese, U., Shahabi, M.A.: Subgroups which are the union of four conjugacy classes. Commun. Algebra 29(2), 695-701 (2001)

Shahryari, M., Shahabi, M.A.: Subgroups which are the union of three conjugate classes. J. Algebra 207(1), 326-332 (1998)

The GAP Group.: GAP–groups, algorithms and programming, Vers. 4.4.12. (2008). http://www.gap-system.org

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem