Mostrar el registro sencillo del ítem
dc.contributor.author | Beltrán, Antonio | es_ES |
dc.contributor.author | Felipe Román, María Josefa | es_ES |
dc.contributor.author | Melchor, Carmen | es_ES |
dc.date.accessioned | 2020-07-31T03:31:24Z | |
dc.date.available | 2020-07-31T03:31:24Z | |
dc.date.issued | 2017-01 | es_ES |
dc.identifier.issn | 0026-9255 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/149080 | |
dc.description.abstract | [EN] Let G be a finite group and N a normal subgroup of G. We determine the structure of N when the graph G(N), which is the graph associated to the conjugacy classes of G contained in N, has no triangles and when the graph consists in exactly one triangle. | es_ES |
dc.description.sponsorship | The research of the first and second authors is supported by the Valencian Government, Proyecto PROMETEOII/2015/011. The first and the third authors are also partially supported by Universitat Jaume I, Grant P11B2015-77. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Monatshefte für Mathematik | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Finite groups | es_ES |
dc.subject | Conjugacy classes | es_ES |
dc.subject | Normal subgroups | es_ES |
dc.subject | Graphs | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Triangles in the graph of conjugacy classes of normal subgroups | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/S00605-015-0866-9 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/UJI//P1-1B2015-77/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2015%2F011/ES/Caracteres y clases de conjugación de grupos finitos II/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Beltrán, A.; Felipe Román, MJ.; Melchor, C. (2017). Triangles in the graph of conjugacy classes of normal subgroups. Monatshefte für Mathematik. 182(1):5-21. https://doi.org/10.1007/S00605-015-0866-9 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/S00605-015-0866-9 | es_ES |
dc.description.upvformatpinicio | 5 | es_ES |
dc.description.upvformatpfin | 21 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 182 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.pasarela | S\323482 | es_ES |
dc.contributor.funder | Universitat Jaume I | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.description.references | Bertram, E.A., Herzog, M., Mann, A.: On a graph related to conjugacy classes of groups. Bull. London Math. Soc. 22(6), 569-575 (1990) | es_ES |
dc.description.references | Beltrán, A., Felipe, M.J., Melchor, C.: Graphs associated to conjugacy classes of normal subgroups in finite groups. J. Algebra 443, 335-348 (2015) | es_ES |
dc.description.references | Camina, A.R.: Arithmetical conditions on the conjugacy class numbers of a finite group. J. London Math. Soc. 2(5), 127-132 (1972) | es_ES |
dc.description.references | Deaconescu, M.: Classification of finite groups with all elements of prime order. Proc. Am. Math. Soc. 106(3), 625-629 (1989) | es_ES |
dc.description.references | Doerk, K., Hawkes, T.: Finite soluble groups. de Gruyter Expositions in Mathematics, vol. 4. Walter de Gruyter, Berlin (1992) | es_ES |
dc.description.references | Fang, M., Zhang, P.: Finite groups with graphs containing no triangles. J. Algebra 264(2), 613-619 (2003) | es_ES |
dc.description.references | Higman, G.: Finite groups in which every element has prime power order. J. London Math. Soc. 32, 335-342 (1957) | es_ES |
dc.description.references | Manz, O., Wolf, T.R.: Representations of solvable groups. Cambridge Univ. Press, Cambridge (1993) | es_ES |
dc.description.references | Riese, U., Shahabi, M.A.: Subgroups which are the union of four conjugacy classes. Commun. Algebra 29(2), 695-701 (2001) | es_ES |
dc.description.references | Shahryari, M., Shahabi, M.A.: Subgroups which are the union of three conjugate classes. J. Algebra 207(1), 326-332 (1998) | es_ES |
dc.description.references | The GAP Group.: GAP–groups, algorithms and programming, Vers. 4.4.12. (2008). http://www.gap-system.org | es_ES |