- -

Triangles in the graph of conjugacy classes of normal subgroups

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Triangles in the graph of conjugacy classes of normal subgroups

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Beltrán, Antonio es_ES
dc.contributor.author Felipe Román, María Josefa es_ES
dc.contributor.author Melchor, Carmen es_ES
dc.date.accessioned 2020-07-31T03:31:24Z
dc.date.available 2020-07-31T03:31:24Z
dc.date.issued 2017-01 es_ES
dc.identifier.issn 0026-9255 es_ES
dc.identifier.uri http://hdl.handle.net/10251/149080
dc.description.abstract [EN] Let G be a finite group and N a normal subgroup of G. We determine the structure of N when the graph G(N), which is the graph associated to the conjugacy classes of G contained in N, has no triangles and when the graph consists in exactly one triangle. es_ES
dc.description.sponsorship The research of the first and second authors is supported by the Valencian Government, Proyecto PROMETEOII/2015/011. The first and the third authors are also partially supported by Universitat Jaume I, Grant P11B2015-77. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Monatshefte für Mathematik es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Finite groups es_ES
dc.subject Conjugacy classes es_ES
dc.subject Normal subgroups es_ES
dc.subject Graphs es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Triangles in the graph of conjugacy classes of normal subgroups es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/S00605-015-0866-9 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UJI//P1-1B2015-77/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2015%2F011/ES/Caracteres y clases de conjugación de grupos finitos II/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Beltrán, A.; Felipe Román, MJ.; Melchor, C. (2017). Triangles in the graph of conjugacy classes of normal subgroups. Monatshefte für Mathematik. 182(1):5-21. https://doi.org/10.1007/S00605-015-0866-9 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/S00605-015-0866-9 es_ES
dc.description.upvformatpinicio 5 es_ES
dc.description.upvformatpfin 21 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 182 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\323482 es_ES
dc.contributor.funder Universitat Jaume I es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Bertram, E.A., Herzog, M., Mann, A.: On a graph related to conjugacy classes of groups. Bull. London Math. Soc. 22(6), 569-575 (1990) es_ES
dc.description.references Beltrán, A., Felipe, M.J., Melchor, C.: Graphs associated to conjugacy classes of normal subgroups in finite groups. J. Algebra 443, 335-348 (2015) es_ES
dc.description.references Camina, A.R.: Arithmetical conditions on the conjugacy class numbers of a finite group. J. London Math. Soc. 2(5), 127-132 (1972) es_ES
dc.description.references Deaconescu, M.: Classification of finite groups with all elements of prime order. Proc. Am. Math. Soc. 106(3), 625-629 (1989) es_ES
dc.description.references Doerk, K., Hawkes, T.: Finite soluble groups. de Gruyter Expositions in Mathematics, vol. 4. Walter de Gruyter, Berlin (1992) es_ES
dc.description.references Fang, M., Zhang, P.: Finite groups with graphs containing no triangles. J. Algebra 264(2), 613-619 (2003) es_ES
dc.description.references Higman, G.: Finite groups in which every element has prime power order. J. London Math. Soc. 32, 335-342 (1957) es_ES
dc.description.references Manz, O., Wolf, T.R.: Representations of solvable groups. Cambridge Univ. Press, Cambridge (1993) es_ES
dc.description.references Riese, U., Shahabi, M.A.: Subgroups which are the union of four conjugacy classes. Commun. Algebra 29(2), 695-701 (2001) es_ES
dc.description.references Shahryari, M., Shahabi, M.A.: Subgroups which are the union of three conjugate classes. J. Algebra 207(1), 326-332 (1998) es_ES
dc.description.references The GAP Group.: GAP–groups, algorithms and programming, Vers. 4.4.12. (2008). http://www.gap-system.org es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem