Mostrar el registro sencillo del ítem
dc.contributor.author | Kutnjak, D. | es_ES |
dc.contributor.author | Elena Fito, Santiago Fco. | es_ES |
dc.contributor.author | Ravnikar, M. | es_ES |
dc.date.accessioned | 2020-07-31T03:31:37Z | |
dc.date.available | 2020-07-31T03:31:37Z | |
dc.date.issued | 2017-08 | es_ES |
dc.identifier.issn | 0022-538X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/149086 | |
dc.description.abstract | [EN] RNA viruses are one of the fastest evolving biological entities. Within their hosts, they exist as genetically diverse populations (i.e., viral mutant swarms), which are sculpted by different evolutionary mechanisms, such as mutation, natural selection and genetic drift, and also the interactions between genetic variants within the mutant swarms. To elucidate the mechanisms that modulate the population diversity of an important plant pathogenic virus, we performed evolution experiments with Potato virus Y (PVY) in potato genotypes that differ in their defense response against the virus. Using deep sequencing of small RNAs, we followed the temporal dynamics of standing and newly-generated variation in the evolving viral lineages. A time-sampled approach allowed us to: (i) reconstruct theoretical haplotypes in the starting population by using clustering of single nucleotide polymorphisms' trajectories and (ii) use quantitative population genetics approaches to estimate the contribution of selection and genetic drift, and their interplay, to the evolution of the virus. We detected imprints of strong selective sweeps and narrow genetic bottlenecks, followed by the shift in frequency of selected haplotypes. Comparison of patterns of viral evolution in differently susceptible host genotypes indicated possible diversifying evolution of PVY in the less susceptible host (efficient in the accumulation of salicylicacid). | es_ES |
dc.description.sponsorship | This study was supported by the Slovenian Research Agency (grants L4-5525 and P4-0165 and Ph.D. grant to D.K.). Work in Valencia was supported by Spain Ministry of Economy and Competitiveness (grant BFU2015-65037-P to S.F.E.), and short-term scientific mission support was provided to D.K. in the frame of EU-funded COST action FA1407. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | American Society for Microbiology | es_ES |
dc.relation.ispartof | Journal of Virology | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Potato virus Y | es_ES |
dc.subject | Experimental evolution | es_ES |
dc.subject | Genetic drift | es_ES |
dc.subject | Natural selection | es_ES |
dc.subject | SRNA deep sequencing | es_ES |
dc.title | Time-sampled population sequencing reveals the interplay of selection and genetic drift in experimental evolution of Potato virus Y | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1128/JVI.00690-17 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ARRS//L4-5525/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/COST//FA1407/EU/Application of next generation sequencing for the study and diagnosis of plant viral diseases in agriculture/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ARRS//P4-0165/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BFU2015-65037-P/ES/EVOLUCION DE VIRUS EN HUESPEDES CON SUSCEPTIBILIDAD VARIABLE: CONSECUENCIAS EN EFICACIA Y VIRULENCIA DE CAMBIOS EN LAS REDES INTERACTOMICAS DE PROTEINAS VIRUS-HUESPED/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | Kutnjak, D.; Elena Fito, SF.; Ravnikar, M. (2017). Time-sampled population sequencing reveals the interplay of selection and genetic drift in experimental evolution of Potato virus Y. Journal of Virology. 91(16):1-17. https://doi.org/10.1128/JVI.00690-17 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1128/JVI.00690-17 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 17 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 91 | es_ES |
dc.description.issue | 16 | es_ES |
dc.identifier.pmid | 28592544 | es_ES |
dc.identifier.pmcid | PMC5533922 | es_ES |
dc.relation.pasarela | S\339123 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Slovenian Research Agency | es_ES |
dc.contributor.funder | European Cooperation in Science and Technology | es_ES |
dc.description.references | Andino, R., & Domingo, E. (2015). Viral quasispecies. Virology, 479-480, 46-51. doi:10.1016/j.virol.2015.03.022 | es_ES |
dc.description.references | Ohshima, K., Nomiyama, R., Mitoma, S., Honda, Y., Yasaka, R., & Tomimura, K. (2016). Evolutionary rates and genetic diversities of mixed potyviruses in Narcissus. Infection, Genetics and Evolution, 45, 213-223. doi:10.1016/j.meegid.2016.08.036 | es_ES |
dc.description.references | Froissart, R., Roze, D., Uzest, M., Galibert, L., Blanc, S., & Michalakis, Y. (2005). Recombination Every Day: Abundant Recombination in a Virus during a Single Multi-Cellular Host Infection. PLoS Biology, 3(3), e89. doi:10.1371/journal.pbio.0030089 | es_ES |
dc.description.references | Tromas, N., Zwart, M. P., Poulain, M., & Elena, S. F. (2014). Estimation of the in vivo recombination rate for a plant RNA virus. Journal of General Virology, 95(3), 724-732. doi:10.1099/vir.0.060822-0 | es_ES |
dc.description.references | Simon-Loriere, E., & Holmes, E. C. (2011). Why do RNA viruses recombine? Nature Reviews Microbiology, 9(8), 617-626. doi:10.1038/nrmicro2614 | es_ES |
dc.description.references | Zwart, M. P., & Elena, S. F. (2015). Matters of Size: Genetic Bottlenecks in Virus Infection and Their Potential Impact on Evolution. Annual Review of Virology, 2(1), 161-179. doi:10.1146/annurev-virology-100114-055135 | es_ES |
dc.description.references | Neher, R. A. (2013). Genetic Draft, Selective Interference, and Population Genetics of Rapid Adaptation. Annual Review of Ecology, Evolution, and Systematics, 44(1), 195-215. doi:10.1146/annurev-ecolsys-110512-135920 | es_ES |
dc.description.references | Elena, S. F., Fraile, A., & García-Arenal, F. (2014). Evolution and Emergence of Plant Viruses. Advances in Virus Research, 161-191. doi:10.1016/b978-0-12-800098-4.00003-9 | es_ES |
dc.description.references | Longdon, B., Brockhurst, M. A., Russell, C. A., Welch, J. J., & Jiggins, F. M. (2014). The Evolution and Genetics of Virus Host Shifts. PLoS Pathogens, 10(11), e1004395. doi:10.1371/journal.ppat.1004395 | es_ES |
dc.description.references | Vassilakos, N., Simon, V., Tzima, A., Johansen, E., & Moury, B. (2015). Genetic Determinism and Evolutionary Reconstruction of a Host Jump in a Plant Virus. Molecular Biology and Evolution, 33(2), 541-553. doi:10.1093/molbev/msv222 | es_ES |
dc.description.references | Stapleford, K. A., Coffey, L. L., Lay, S., Bordería, A. V., Duong, V., Isakov, O., … Vignuzzi, M. (2014). Emergence and Transmission of Arbovirus Evolutionary Intermediates with Epidemic Potential. Cell Host & Microbe, 15(6), 706-716. doi:10.1016/j.chom.2014.05.008 | es_ES |
dc.description.references | Remold, S. K., Rambaut, A., & Turner, P. E. (2008). Evolutionary Genomics of Host Adaptation in Vesicular Stomatitis Virus. Molecular Biology and Evolution, 25(6), 1138-1147. doi:10.1093/molbev/msn059 | es_ES |
dc.description.references | Foll, M., Poh, Y.-P., Renzette, N., Ferrer-Admetlla, A., Bank, C., Shim, H., … Jensen, J. D. (2014). Influenza Virus Drug Resistance: A Time-Sampled Population Genetics Perspective. PLoS Genetics, 10(2), e1004185. doi:10.1371/journal.pgen.1004185 | es_ES |
dc.description.references | Bedhomme, S., Lafforgue, G., & Elena, S. F. (2011). Multihost Experimental Evolution of a Plant RNA Virus Reveals Local Adaptation and Host-Specific Mutations. Molecular Biology and Evolution, 29(5), 1481-1492. doi:10.1093/molbev/msr314 | es_ES |
dc.description.references | Hillung, J., Cuevas, J. M., Valverde, S., & Elena, S. F. (2014). EXPERIMENTAL EVOLUTION OF AN EMERGING PLANT VIRUS IN HOST GENOTYPES THAT DIFFER IN THEIR SUSCEPTIBILITY TO INFECTION. Evolution, 68(9), 2467-2480. doi:10.1111/evo.12458 | es_ES |
dc.description.references | Acevedo, A., Brodsky, L., & Andino, R. (2013). Mutational and fitness landscapes of an RNA virus revealed through population sequencing. Nature, 505(7485), 686-690. doi:10.1038/nature12861 | es_ES |
dc.description.references | Foll, M., Shim, H., & Jensen, J. D. (2014). WFABC: a Wright-Fisher ABC-based approach for inferring effective population sizes and selection coefficients from time-sampled data. Molecular Ecology Resources, 15(1), 87-98. doi:10.1111/1755-0998.12280 | es_ES |
dc.description.references | Bordería, A. V., Isakov, O., Moratorio, G., Henningsson, R., Agüera-González, S., Organtini, L., … Vignuzzi, M. (2015). Group Selection and Contribution of Minority Variants during Virus Adaptation Determines Virus Fitness and Phenotype. PLOS Pathogens, 11(5), e1004838. doi:10.1371/journal.ppat.1004838 | es_ES |
dc.description.references | Kessinger, T. A., Perelson, A. S., & Neher, R. A. (2013). Inferring HIV Escape Rates from Multi-Locus Genotype Data. Frontiers in Immunology, 4. doi:10.3389/fimmu.2013.00252 | es_ES |
dc.description.references | SCHOLTHOF, K.-B. G., ADKINS, S., CZOSNEK, H., PALUKAITIS, P., JACQUOT, E., HOHN, T., … FOSTER, G. D. (2011). Top 10 plant viruses in molecular plant pathology. Molecular Plant Pathology, 12(9), 938-954. doi:10.1111/j.1364-3703.2011.00752.x | es_ES |
dc.description.references | Karasev, A. V., & Gray, S. M. (2013). Continuous and Emerging Challenges of Potato virus Y in Potato. Annual Review of Phytopathology, 51(1), 571-586. doi:10.1146/annurev-phyto-082712-102332 | es_ES |
dc.description.references | Kogovšek, P., Pompe-Novak, M., Baebler, Š., Rotter, A., Gow, L., Gruden, K., … Ravnikar, M. (2010). Aggressive and mild Potato virus Y isolates trigger different specific responses in susceptible potato plants. Plant Pathology, 59(6), 1121-1132. doi:10.1111/j.1365-3059.2010.02340.x | es_ES |
dc.description.references | BAEBLER, Š., KREČIČ-STRES, H., ROTTER, A., KOGOVŠEK, P., CANKAR, K., KOK, E. J., … RAVNIKAR, M. (2009). PVYNTNelicits a diverse gene expression response in different potato genotypes in the first 12 h after inoculation. Molecular Plant Pathology, 10(2), 263-275. doi:10.1111/j.1364-3703.2008.00530.x | es_ES |
dc.description.references | Stare, T., Ramšak, Ž., Blejec, A., Stare, K., Turnšek, N., Weckwerth, W., … Gruden, K. (2015). Bimodal dynamics of primary metabolism-related responses in tolerant potato-Potato virus Y interaction. BMC Genomics, 16(1). doi:10.1186/s12864-015-1925-2 | es_ES |
dc.description.references | Kogovšek, P., Pompe-Novak, M., Petek, M., Fragner, L., Weckwerth, W., & Gruden, K. (2016). Primary Metabolism, Phenylpropanoids and Antioxidant Pathways Are Regulated in Potato as a Response to Potato virus Y Infection. PLOS ONE, 11(1), e0146135. doi:10.1371/journal.pone.0146135 | es_ES |
dc.description.references | Baebler, Š., Stare, K., Kovač, M., Blejec, A., Prezelj, N., Stare, T., … Gruden, K. (2011). Dynamics of Responses in Compatible Potato - Potato virus Y Interaction Are Modulated by Salicylic Acid. PLoS ONE, 6(12), e29009. doi:10.1371/journal.pone.0029009 | es_ES |
dc.description.references | Baebler, Š., Witek, K., Petek, M., Stare, K., Tušek-Žnidarič, M., Pompe-Novak, M., … Hennig, J. (2014). Salicylic acid is an indispensable component of the Ny-1 resistance-gene-mediated response against Potato virus Y infection in potato. Journal of Experimental Botany, 65(4), 1095-1109. doi:10.1093/jxb/ert447 | es_ES |
dc.description.references | Singh, D. P., Moore, C. A., Gilliland, A., & Carr, J. P. (2004). Activation of multiple antiviral defence mechanisms by salicylic acid. Molecular Plant Pathology, 5(1), 57-63. doi:10.1111/j.1364-3703.2004.00203.x | es_ES |
dc.description.references | Kutnjak, D., Rupar, M., Gutierrez-Aguirre, I., Curk, T., Kreuze, J. F., & Ravnikar, M. (2015). Deep Sequencing of Virus-Derived Small Interfering RNAs and RNA from Viral Particles Shows Highly Similar Mutational Landscapes of a Plant Virus Population. Journal of Virology, 89(9), 4760-4769. doi:10.1128/jvi.03685-14 | es_ES |
dc.description.references | Zagordi, O., Bhattacharya, A., Eriksson, N., & Beerenwinkel, N. (2011). ShoRAH: estimating the genetic diversity of a mixed sample from next-generation sequencing data. BMC Bioinformatics, 12(1). doi:10.1186/1471-2105-12-119 | es_ES |
dc.description.references | Prosperi, M. C. F., & Salemi, M. (2011). QuRe: software for viral quasispecies reconstruction from next-generation sequencing data. Bioinformatics, 28(1), 132-133. doi:10.1093/bioinformatics/btr627 | es_ES |
dc.description.references | Prabhakaran, S., Rey, M., Zagordi, O., Beerenwinkel, N., & Roth, V. (2014). HIV Haplotype Inference Using a Propagating Dirichlet Process Mixture Model. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 11(1), 182-191. doi:10.1109/tcbb.2013.145 | es_ES |
dc.description.references | Dynan, W., Fox, K., & Stoddard, B. (2013). Editorial: NAR Surveys the Past, Present and Future of Restriction Endonucleases. Nucleic Acids Research, 42(1), 1-2. doi:10.1093/nar/gkt1324 | es_ES |
dc.description.references | Töpfer, A., Marschall, T., Bull, R. A., Luciani, F., Schönhuth, A., & Beerenwinkel, N. (2014). Viral Quasispecies Assembly via Maximal Clique Enumeration. PLoS Computational Biology, 10(3), e1003515. doi:10.1371/journal.pcbi.1003515 | es_ES |
dc.description.references | Schirmer, M., Sloan, W. T., & Quince, C. (2012). Benchmarking of viral haplotype reconstruction programmes: an overview of the capacities and limitations of currently available programmes. Briefings in Bioinformatics, 15(3), 431-442. doi:10.1093/bib/bbs081 | es_ES |
dc.description.references | Lang, G. I., Rice, D. P., Hickman, M. J., Sodergren, E., Weinstock, G. M., Botstein, D., & Desai, M. M. (2013). Pervasive genetic hitchhiking and clonal interference in forty evolving yeast populations. Nature, 500(7464), 571-574. doi:10.1038/nature12344 | es_ES |
dc.description.references | Zwart, M. P., Daròs, J.-A., & Elena, S. F. (2012). Effects of Potyvirus Effective Population Size in Inoculated Leaves on Viral Accumulation and the Onset of Symptoms. Journal of Virology, 86(18), 9737-9747. doi:10.1128/jvi.00909-12 | es_ES |
dc.description.references | Ruiz-Jarabo, C. M., Arias, A., Baranowski, E., Escarmís, C., & Domingo, E. (2000). Memory in Viral Quasispecies. Journal of Virology, 74(8), 3543-3547. doi:10.1128/jvi.74.8.3543-3547.2000 | es_ES |
dc.description.references | Pruss, G. J., Lawrence, C. B., Bass, T., Li, Q. Q., Bowman, L. H., & Vance, V. (2004). The potyviral suppressor of RNA silencing confers enhanced resistance to multiple pathogens. Virology, 320(1), 107-120. doi:10.1016/j.virol.2003.11.027 | es_ES |
dc.description.references | Alamillo, J. M., Saénz, P., & García, J. A. (2006). Salicylic acid-mediated and RNA-silencing defense mechanisms cooperate in the restriction of systemic spread of plum pox virus in tobacco. The Plant Journal, 48(2), 217-227. doi:10.1111/j.1365-313x.2006.02861.x | es_ES |
dc.description.references | Yu, D., Fan, B., MacFarlane, S. A., & Chen, Z. (2003). Analysis of the Involvement of an Inducible Arabidopsis RNA-Dependent RNA Polymerase in Antiviral Defense. Molecular Plant-Microbe Interactions®, 16(3), 206-216. doi:10.1094/mpmi.2003.16.3.206 | es_ES |
dc.description.references | Miyashita, S., Ishibashi, K., Kishino, H., & Ishikawa, M. (2015). Viruses Roll the Dice: The Stochastic Behavior of Viral Genome Molecules Accelerates Viral Adaptation at the Cell and Tissue Levels. PLOS Biology, 13(3), e1002094. doi:10.1371/journal.pbio.1002094 | es_ES |
dc.description.references | Kogovšek, P., Gow, L., Pompe-Novak, M., Gruden, K., Foster, G. D., Boonham, N., & Ravnikar, M. (2008). Single-step RT real-time PCR for sensitive detection and discrimination of Potato virus Y isolates. Journal of Virological Methods, 149(1), 1-11. doi:10.1016/j.jviromet.2008.01.025 | es_ES |
dc.description.references | Weller, S. A., Elphinstone, J. G., Smith, N. C., Boonham, N., & Stead, D. E. (2000). Detection of Ralstonia solanacearumStrains with a Quantitative, Multiplex, Real-Time, Fluorogenic PCR (TaqMan) Assay. Applied and Environmental Microbiology, 66(7), 2853-2858. doi:10.1128/aem.66.7.2853-2858.2000 | es_ES |
dc.description.references | Gutiérrez-Aguirre, I., Rački, N., Dreo, T., & Ravnikar, M. (2015). Droplet Digital PCR for Absolute Quantification of Pathogens. Methods in Molecular Biology, 331-347. doi:10.1007/978-1-4939-2620-6_24 | es_ES |
dc.description.references | Rupar, M., Faurez, F., Tribodet, M., Gutiérrez-Aguirre, I., Delaunay, A., Glais, L., … Ravnikar, M. (2015). Fluorescently Tagged Potato virus Y: A Versatile Tool for Functional Analysis of Plant-Virus Interactions. Molecular Plant-Microbe Interactions®, 28(7), 739-750. doi:10.1094/mpmi-07-14-0218-ta | es_ES |
dc.description.references | Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25(14), 1754-1760. doi:10.1093/bioinformatics/btp324 | es_ES |
dc.description.references | Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., … Homer, N. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25(16), 2078-2079. doi:10.1093/bioinformatics/btp352 | es_ES |
dc.description.references | Nelson, C. W., Moncla, L. H., & Hughes, A. L. (2015). SNPGenie: estimating evolutionary parameters to detect natural selection using pooled next-generation sequencing data: Table 1. Bioinformatics, btv449. doi:10.1093/bioinformatics/btv449 | es_ES |
dc.description.references | Suzuki R Shimodaira H . 2015. pvclust: hierarchical clustering with P values via multiscale bootstrap resampling. R package version 2.0-0. https://cran.r-project.org/web/packages/pvclust/ . | es_ES |