- -

Time-sampled population sequencing reveals the interplay of selection and genetic drift in experimental evolution of Potato virus Y

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Time-sampled population sequencing reveals the interplay of selection and genetic drift in experimental evolution of Potato virus Y

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Kutnjak, D. es_ES
dc.contributor.author Elena Fito, Santiago Fco. es_ES
dc.contributor.author Ravnikar, M. es_ES
dc.date.accessioned 2020-07-31T03:31:37Z
dc.date.available 2020-07-31T03:31:37Z
dc.date.issued 2017-08 es_ES
dc.identifier.issn 0022-538X es_ES
dc.identifier.uri http://hdl.handle.net/10251/149086
dc.description.abstract [EN] RNA viruses are one of the fastest evolving biological entities. Within their hosts, they exist as genetically diverse populations (i.e., viral mutant swarms), which are sculpted by different evolutionary mechanisms, such as mutation, natural selection and genetic drift, and also the interactions between genetic variants within the mutant swarms. To elucidate the mechanisms that modulate the population diversity of an important plant pathogenic virus, we performed evolution experiments with Potato virus Y (PVY) in potato genotypes that differ in their defense response against the virus. Using deep sequencing of small RNAs, we followed the temporal dynamics of standing and newly-generated variation in the evolving viral lineages. A time-sampled approach allowed us to: (i) reconstruct theoretical haplotypes in the starting population by using clustering of single nucleotide polymorphisms' trajectories and (ii) use quantitative population genetics approaches to estimate the contribution of selection and genetic drift, and their interplay, to the evolution of the virus. We detected imprints of strong selective sweeps and narrow genetic bottlenecks, followed by the shift in frequency of selected haplotypes. Comparison of patterns of viral evolution in differently susceptible host genotypes indicated possible diversifying evolution of PVY in the less susceptible host (efficient in the accumulation of salicylicacid). es_ES
dc.description.sponsorship This study was supported by the Slovenian Research Agency (grants L4-5525 and P4-0165 and Ph.D. grant to D.K.). Work in Valencia was supported by Spain Ministry of Economy and Competitiveness (grant BFU2015-65037-P to S.F.E.), and short-term scientific mission support was provided to D.K. in the frame of EU-funded COST action FA1407. es_ES
dc.language Inglés es_ES
dc.publisher American Society for Microbiology es_ES
dc.relation.ispartof Journal of Virology es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Potato virus Y es_ES
dc.subject Experimental evolution es_ES
dc.subject Genetic drift es_ES
dc.subject Natural selection es_ES
dc.subject SRNA deep sequencing es_ES
dc.title Time-sampled population sequencing reveals the interplay of selection and genetic drift in experimental evolution of Potato virus Y es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1128/JVI.00690-17 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ARRS//L4-5525/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/COST//FA1407/EU/Application of next generation sequencing for the study and diagnosis of plant viral diseases in agriculture/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ARRS//P4-0165/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BFU2015-65037-P/ES/EVOLUCION DE VIRUS EN HUESPEDES CON SUSCEPTIBILIDAD VARIABLE: CONSECUENCIAS EN EFICACIA Y VIRULENCIA DE CAMBIOS EN LAS REDES INTERACTOMICAS DE PROTEINAS VIRUS-HUESPED/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Kutnjak, D.; Elena Fito, SF.; Ravnikar, M. (2017). Time-sampled population sequencing reveals the interplay of selection and genetic drift in experimental evolution of Potato virus Y. Journal of Virology. 91(16):1-17. https://doi.org/10.1128/JVI.00690-17 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1128/JVI.00690-17 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 91 es_ES
dc.description.issue 16 es_ES
dc.identifier.pmid 28592544 es_ES
dc.identifier.pmcid PMC5533922 es_ES
dc.relation.pasarela S\339123 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Slovenian Research Agency es_ES
dc.contributor.funder European Cooperation in Science and Technology es_ES
dc.description.references Andino, R., & Domingo, E. (2015). Viral quasispecies. Virology, 479-480, 46-51. doi:10.1016/j.virol.2015.03.022 es_ES
dc.description.references Ohshima, K., Nomiyama, R., Mitoma, S., Honda, Y., Yasaka, R., & Tomimura, K. (2016). Evolutionary rates and genetic diversities of mixed potyviruses in Narcissus. Infection, Genetics and Evolution, 45, 213-223. doi:10.1016/j.meegid.2016.08.036 es_ES
dc.description.references Froissart, R., Roze, D., Uzest, M., Galibert, L., Blanc, S., & Michalakis, Y. (2005). Recombination Every Day: Abundant Recombination in a Virus during a Single Multi-Cellular Host Infection. PLoS Biology, 3(3), e89. doi:10.1371/journal.pbio.0030089 es_ES
dc.description.references Tromas, N., Zwart, M. P., Poulain, M., & Elena, S. F. (2014). Estimation of the in vivo recombination rate for a plant RNA virus. Journal of General Virology, 95(3), 724-732. doi:10.1099/vir.0.060822-0 es_ES
dc.description.references Simon-Loriere, E., & Holmes, E. C. (2011). Why do RNA viruses recombine? Nature Reviews Microbiology, 9(8), 617-626. doi:10.1038/nrmicro2614 es_ES
dc.description.references Zwart, M. P., & Elena, S. F. (2015). Matters of Size: Genetic Bottlenecks in Virus Infection and Their Potential Impact on Evolution. Annual Review of Virology, 2(1), 161-179. doi:10.1146/annurev-virology-100114-055135 es_ES
dc.description.references Neher, R. A. (2013). Genetic Draft, Selective Interference, and Population Genetics of Rapid Adaptation. Annual Review of Ecology, Evolution, and Systematics, 44(1), 195-215. doi:10.1146/annurev-ecolsys-110512-135920 es_ES
dc.description.references Elena, S. F., Fraile, A., & García-Arenal, F. (2014). Evolution and Emergence of Plant Viruses. Advances in Virus Research, 161-191. doi:10.1016/b978-0-12-800098-4.00003-9 es_ES
dc.description.references Longdon, B., Brockhurst, M. A., Russell, C. A., Welch, J. J., & Jiggins, F. M. (2014). The Evolution and Genetics of Virus Host Shifts. PLoS Pathogens, 10(11), e1004395. doi:10.1371/journal.ppat.1004395 es_ES
dc.description.references Vassilakos, N., Simon, V., Tzima, A., Johansen, E., & Moury, B. (2015). Genetic Determinism and Evolutionary Reconstruction of a Host Jump in a Plant Virus. Molecular Biology and Evolution, 33(2), 541-553. doi:10.1093/molbev/msv222 es_ES
dc.description.references Stapleford, K. A., Coffey, L. L., Lay, S., Bordería, A. V., Duong, V., Isakov, O., … Vignuzzi, M. (2014). Emergence and Transmission of Arbovirus Evolutionary Intermediates with Epidemic Potential. Cell Host & Microbe, 15(6), 706-716. doi:10.1016/j.chom.2014.05.008 es_ES
dc.description.references Remold, S. K., Rambaut, A., & Turner, P. E. (2008). Evolutionary Genomics of Host Adaptation in Vesicular Stomatitis Virus. Molecular Biology and Evolution, 25(6), 1138-1147. doi:10.1093/molbev/msn059 es_ES
dc.description.references Foll, M., Poh, Y.-P., Renzette, N., Ferrer-Admetlla, A., Bank, C., Shim, H., … Jensen, J. D. (2014). Influenza Virus Drug Resistance: A Time-Sampled Population Genetics Perspective. PLoS Genetics, 10(2), e1004185. doi:10.1371/journal.pgen.1004185 es_ES
dc.description.references Bedhomme, S., Lafforgue, G., & Elena, S. F. (2011). Multihost Experimental Evolution of a Plant RNA Virus Reveals Local Adaptation and Host-Specific Mutations. Molecular Biology and Evolution, 29(5), 1481-1492. doi:10.1093/molbev/msr314 es_ES
dc.description.references Hillung, J., Cuevas, J. M., Valverde, S., & Elena, S. F. (2014). EXPERIMENTAL EVOLUTION OF AN EMERGING PLANT VIRUS IN HOST GENOTYPES THAT DIFFER IN THEIR SUSCEPTIBILITY TO INFECTION. Evolution, 68(9), 2467-2480. doi:10.1111/evo.12458 es_ES
dc.description.references Acevedo, A., Brodsky, L., & Andino, R. (2013). Mutational and fitness landscapes of an RNA virus revealed through population sequencing. Nature, 505(7485), 686-690. doi:10.1038/nature12861 es_ES
dc.description.references Foll, M., Shim, H., & Jensen, J. D. (2014). WFABC: a Wright-Fisher ABC-based approach for inferring effective population sizes and selection coefficients from time-sampled data. Molecular Ecology Resources, 15(1), 87-98. doi:10.1111/1755-0998.12280 es_ES
dc.description.references Bordería, A. V., Isakov, O., Moratorio, G., Henningsson, R., Agüera-González, S., Organtini, L., … Vignuzzi, M. (2015). Group Selection and Contribution of Minority Variants during Virus Adaptation Determines Virus Fitness and Phenotype. PLOS Pathogens, 11(5), e1004838. doi:10.1371/journal.ppat.1004838 es_ES
dc.description.references Kessinger, T. A., Perelson, A. S., & Neher, R. A. (2013). Inferring HIV Escape Rates from Multi-Locus Genotype Data. Frontiers in Immunology, 4. doi:10.3389/fimmu.2013.00252 es_ES
dc.description.references SCHOLTHOF, K.-B. G., ADKINS, S., CZOSNEK, H., PALUKAITIS, P., JACQUOT, E., HOHN, T., … FOSTER, G. D. (2011). Top 10 plant viruses in molecular plant pathology. Molecular Plant Pathology, 12(9), 938-954. doi:10.1111/j.1364-3703.2011.00752.x es_ES
dc.description.references Karasev, A. V., & Gray, S. M. (2013). Continuous and Emerging Challenges of Potato virus Y in Potato. Annual Review of Phytopathology, 51(1), 571-586. doi:10.1146/annurev-phyto-082712-102332 es_ES
dc.description.references Kogovšek, P., Pompe-Novak, M., Baebler, Š., Rotter, A., Gow, L., Gruden, K., … Ravnikar, M. (2010). Aggressive and mild Potato virus Y isolates trigger different specific responses in susceptible potato plants. Plant Pathology, 59(6), 1121-1132. doi:10.1111/j.1365-3059.2010.02340.x es_ES
dc.description.references BAEBLER, Š., KREČIČ-STRES, H., ROTTER, A., KOGOVŠEK, P., CANKAR, K., KOK, E. J., … RAVNIKAR, M. (2009). PVYNTNelicits a diverse gene expression response in different potato genotypes in the first 12 h after inoculation. Molecular Plant Pathology, 10(2), 263-275. doi:10.1111/j.1364-3703.2008.00530.x es_ES
dc.description.references Stare, T., Ramšak, Ž., Blejec, A., Stare, K., Turnšek, N., Weckwerth, W., … Gruden, K. (2015). Bimodal dynamics of primary metabolism-related responses in tolerant potato-Potato virus Y interaction. BMC Genomics, 16(1). doi:10.1186/s12864-015-1925-2 es_ES
dc.description.references Kogovšek, P., Pompe-Novak, M., Petek, M., Fragner, L., Weckwerth, W., & Gruden, K. (2016). Primary Metabolism, Phenylpropanoids and Antioxidant Pathways Are Regulated in Potato as a Response to Potato virus Y Infection. PLOS ONE, 11(1), e0146135. doi:10.1371/journal.pone.0146135 es_ES
dc.description.references Baebler, Š., Stare, K., Kovač, M., Blejec, A., Prezelj, N., Stare, T., … Gruden, K. (2011). Dynamics of Responses in Compatible Potato - Potato virus Y Interaction Are Modulated by Salicylic Acid. PLoS ONE, 6(12), e29009. doi:10.1371/journal.pone.0029009 es_ES
dc.description.references Baebler, Š., Witek, K., Petek, M., Stare, K., Tušek-Žnidarič, M., Pompe-Novak, M., … Hennig, J. (2014). Salicylic acid is an indispensable component of the Ny-1 resistance-gene-mediated response against Potato virus Y infection in potato. Journal of Experimental Botany, 65(4), 1095-1109. doi:10.1093/jxb/ert447 es_ES
dc.description.references Singh, D. P., Moore, C. A., Gilliland, A., & Carr, J. P. (2004). Activation of multiple antiviral defence mechanisms by salicylic acid. Molecular Plant Pathology, 5(1), 57-63. doi:10.1111/j.1364-3703.2004.00203.x es_ES
dc.description.references Kutnjak, D., Rupar, M., Gutierrez-Aguirre, I., Curk, T., Kreuze, J. F., & Ravnikar, M. (2015). Deep Sequencing of Virus-Derived Small Interfering RNAs and RNA from Viral Particles Shows Highly Similar Mutational Landscapes of a Plant Virus Population. Journal of Virology, 89(9), 4760-4769. doi:10.1128/jvi.03685-14 es_ES
dc.description.references Zagordi, O., Bhattacharya, A., Eriksson, N., & Beerenwinkel, N. (2011). ShoRAH: estimating the genetic diversity of a mixed sample from next-generation sequencing data. BMC Bioinformatics, 12(1). doi:10.1186/1471-2105-12-119 es_ES
dc.description.references Prosperi, M. C. F., & Salemi, M. (2011). QuRe: software for viral quasispecies reconstruction from next-generation sequencing data. Bioinformatics, 28(1), 132-133. doi:10.1093/bioinformatics/btr627 es_ES
dc.description.references Prabhakaran, S., Rey, M., Zagordi, O., Beerenwinkel, N., & Roth, V. (2014). HIV Haplotype Inference Using a Propagating Dirichlet Process Mixture Model. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 11(1), 182-191. doi:10.1109/tcbb.2013.145 es_ES
dc.description.references Dynan, W., Fox, K., & Stoddard, B. (2013). Editorial: NAR Surveys the Past, Present and Future of Restriction Endonucleases. Nucleic Acids Research, 42(1), 1-2. doi:10.1093/nar/gkt1324 es_ES
dc.description.references Töpfer, A., Marschall, T., Bull, R. A., Luciani, F., Schönhuth, A., & Beerenwinkel, N. (2014). Viral Quasispecies Assembly via Maximal Clique Enumeration. PLoS Computational Biology, 10(3), e1003515. doi:10.1371/journal.pcbi.1003515 es_ES
dc.description.references Schirmer, M., Sloan, W. T., & Quince, C. (2012). Benchmarking of viral haplotype reconstruction programmes: an overview of the capacities and limitations of currently available programmes. Briefings in Bioinformatics, 15(3), 431-442. doi:10.1093/bib/bbs081 es_ES
dc.description.references Lang, G. I., Rice, D. P., Hickman, M. J., Sodergren, E., Weinstock, G. M., Botstein, D., & Desai, M. M. (2013). Pervasive genetic hitchhiking and clonal interference in forty evolving yeast populations. Nature, 500(7464), 571-574. doi:10.1038/nature12344 es_ES
dc.description.references Zwart, M. P., Daròs, J.-A., & Elena, S. F. (2012). Effects of Potyvirus Effective Population Size in Inoculated Leaves on Viral Accumulation and the Onset of Symptoms. Journal of Virology, 86(18), 9737-9747. doi:10.1128/jvi.00909-12 es_ES
dc.description.references Ruiz-Jarabo, C. M., Arias, A., Baranowski, E., Escarmís, C., & Domingo, E. (2000). Memory in Viral Quasispecies. Journal of Virology, 74(8), 3543-3547. doi:10.1128/jvi.74.8.3543-3547.2000 es_ES
dc.description.references Pruss, G. J., Lawrence, C. B., Bass, T., Li, Q. Q., Bowman, L. H., & Vance, V. (2004). The potyviral suppressor of RNA silencing confers enhanced resistance to multiple pathogens. Virology, 320(1), 107-120. doi:10.1016/j.virol.2003.11.027 es_ES
dc.description.references Alamillo, J. M., Saénz, P., & García, J. A. (2006). Salicylic acid-mediated and RNA-silencing defense mechanisms cooperate in the restriction of systemic spread of plum pox virus in tobacco. The Plant Journal, 48(2), 217-227. doi:10.1111/j.1365-313x.2006.02861.x es_ES
dc.description.references Yu, D., Fan, B., MacFarlane, S. A., & Chen, Z. (2003). Analysis of the Involvement of an Inducible Arabidopsis RNA-Dependent RNA Polymerase in Antiviral Defense. Molecular Plant-Microbe Interactions®, 16(3), 206-216. doi:10.1094/mpmi.2003.16.3.206 es_ES
dc.description.references Miyashita, S., Ishibashi, K., Kishino, H., & Ishikawa, M. (2015). Viruses Roll the Dice: The Stochastic Behavior of Viral Genome Molecules Accelerates Viral Adaptation at the Cell and Tissue Levels. PLOS Biology, 13(3), e1002094. doi:10.1371/journal.pbio.1002094 es_ES
dc.description.references Kogovšek, P., Gow, L., Pompe-Novak, M., Gruden, K., Foster, G. D., Boonham, N., & Ravnikar, M. (2008). Single-step RT real-time PCR for sensitive detection and discrimination of Potato virus Y isolates. Journal of Virological Methods, 149(1), 1-11. doi:10.1016/j.jviromet.2008.01.025 es_ES
dc.description.references Weller, S. A., Elphinstone, J. G., Smith, N. C., Boonham, N., & Stead, D. E. (2000). Detection of Ralstonia solanacearumStrains with a Quantitative, Multiplex, Real-Time, Fluorogenic PCR (TaqMan) Assay. Applied and Environmental Microbiology, 66(7), 2853-2858. doi:10.1128/aem.66.7.2853-2858.2000 es_ES
dc.description.references Gutiérrez-Aguirre, I., Rački, N., Dreo, T., & Ravnikar, M. (2015). Droplet Digital PCR for Absolute Quantification of Pathogens. Methods in Molecular Biology, 331-347. doi:10.1007/978-1-4939-2620-6_24 es_ES
dc.description.references Rupar, M., Faurez, F., Tribodet, M., Gutiérrez-Aguirre, I., Delaunay, A., Glais, L., … Ravnikar, M. (2015). Fluorescently Tagged Potato virus Y: A Versatile Tool for Functional Analysis of Plant-Virus Interactions. Molecular Plant-Microbe Interactions®, 28(7), 739-750. doi:10.1094/mpmi-07-14-0218-ta es_ES
dc.description.references Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25(14), 1754-1760. doi:10.1093/bioinformatics/btp324 es_ES
dc.description.references Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., … Homer, N. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25(16), 2078-2079. doi:10.1093/bioinformatics/btp352 es_ES
dc.description.references Nelson, C. W., Moncla, L. H., & Hughes, A. L. (2015). SNPGenie: estimating evolutionary parameters to detect natural selection using pooled next-generation sequencing data: Table 1. Bioinformatics, btv449. doi:10.1093/bioinformatics/btv449 es_ES
dc.description.references Suzuki R Shimodaira H . 2015. pvclust: hierarchical clustering with P values via multiscale bootstrap resampling. R package version 2.0-0. https://cran.r-project.org/web/packages/pvclust/ . es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem