- -

Time-sampled population sequencing reveals the interplay of selection and genetic drift in experimental evolution of Potato virus Y

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Time-sampled population sequencing reveals the interplay of selection and genetic drift in experimental evolution of Potato virus Y

Mostrar el registro completo del ítem

Kutnjak, D.; Elena Fito, SF.; Ravnikar, M. (2017). Time-sampled population sequencing reveals the interplay of selection and genetic drift in experimental evolution of Potato virus Y. Journal of Virology. 91(16):1-17. https://doi.org/10.1128/JVI.00690-17

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/149086

Ficheros en el ítem

Metadatos del ítem

Título: Time-sampled population sequencing reveals the interplay of selection and genetic drift in experimental evolution of Potato virus Y
Autor: Kutnjak, D. Elena Fito, Santiago Fco. Ravnikar, M.
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Fecha difusión:
Resumen:
[EN] RNA viruses are one of the fastest evolving biological entities. Within their hosts, they exist as genetically diverse populations (i.e., viral mutant swarms), which are sculpted by different evolutionary mechanisms, ...[+]
Palabras clave: Potato virus Y , Experimental evolution , Genetic drift , Natural selection , SRNA deep sequencing
Derechos de uso: Reconocimiento (by)
Fuente:
Journal of Virology. (issn: 0022-538X )
DOI: 10.1128/JVI.00690-17
Editorial:
American Society for Microbiology
Versión del editor: https://doi.org/10.1128/JVI.00690-17
Código del Proyecto:
info:eu-repo/grantAgreement/ARRS//L4-5525/
info:eu-repo/grantAgreement/COST//FA1407/EU/Application of next generation sequencing for the study and diagnosis of plant viral diseases in agriculture/
info:eu-repo/grantAgreement/ARRS//P4-0165/
info:eu-repo/grantAgreement/MINECO//BFU2015-65037-P/ES/EVOLUCION DE VIRUS EN HUESPEDES CON SUSCEPTIBILIDAD VARIABLE: CONSECUENCIAS EN EFICACIA Y VIRULENCIA DE CAMBIOS EN LAS REDES INTERACTOMICAS DE PROTEINAS VIRUS-HUESPED/
Agradecimientos:
This study was supported by the Slovenian Research Agency (grants L4-5525 and P4-0165 and Ph.D. grant to D.K.). Work in Valencia was supported by Spain Ministry of Economy and Competitiveness (grant BFU2015-65037-P to ...[+]
Tipo: Artículo

References

Andino, R., & Domingo, E. (2015). Viral quasispecies. Virology, 479-480, 46-51. doi:10.1016/j.virol.2015.03.022

Ohshima, K., Nomiyama, R., Mitoma, S., Honda, Y., Yasaka, R., & Tomimura, K. (2016). Evolutionary rates and genetic diversities of mixed potyviruses in Narcissus. Infection, Genetics and Evolution, 45, 213-223. doi:10.1016/j.meegid.2016.08.036

Froissart, R., Roze, D., Uzest, M., Galibert, L., Blanc, S., & Michalakis, Y. (2005). Recombination Every Day: Abundant Recombination in a Virus during a Single Multi-Cellular Host Infection. PLoS Biology, 3(3), e89. doi:10.1371/journal.pbio.0030089 [+]
Andino, R., & Domingo, E. (2015). Viral quasispecies. Virology, 479-480, 46-51. doi:10.1016/j.virol.2015.03.022

Ohshima, K., Nomiyama, R., Mitoma, S., Honda, Y., Yasaka, R., & Tomimura, K. (2016). Evolutionary rates and genetic diversities of mixed potyviruses in Narcissus. Infection, Genetics and Evolution, 45, 213-223. doi:10.1016/j.meegid.2016.08.036

Froissart, R., Roze, D., Uzest, M., Galibert, L., Blanc, S., & Michalakis, Y. (2005). Recombination Every Day: Abundant Recombination in a Virus during a Single Multi-Cellular Host Infection. PLoS Biology, 3(3), e89. doi:10.1371/journal.pbio.0030089

Tromas, N., Zwart, M. P., Poulain, M., & Elena, S. F. (2014). Estimation of the in vivo recombination rate for a plant RNA virus. Journal of General Virology, 95(3), 724-732. doi:10.1099/vir.0.060822-0

Simon-Loriere, E., & Holmes, E. C. (2011). Why do RNA viruses recombine? Nature Reviews Microbiology, 9(8), 617-626. doi:10.1038/nrmicro2614

Zwart, M. P., & Elena, S. F. (2015). Matters of Size: Genetic Bottlenecks in Virus Infection and Their Potential Impact on Evolution. Annual Review of Virology, 2(1), 161-179. doi:10.1146/annurev-virology-100114-055135

Neher, R. A. (2013). Genetic Draft, Selective Interference, and Population Genetics of Rapid Adaptation. Annual Review of Ecology, Evolution, and Systematics, 44(1), 195-215. doi:10.1146/annurev-ecolsys-110512-135920

Elena, S. F., Fraile, A., & García-Arenal, F. (2014). Evolution and Emergence of Plant Viruses. Advances in Virus Research, 161-191. doi:10.1016/b978-0-12-800098-4.00003-9

Longdon, B., Brockhurst, M. A., Russell, C. A., Welch, J. J., & Jiggins, F. M. (2014). The Evolution and Genetics of Virus Host Shifts. PLoS Pathogens, 10(11), e1004395. doi:10.1371/journal.ppat.1004395

Vassilakos, N., Simon, V., Tzima, A., Johansen, E., & Moury, B. (2015). Genetic Determinism and Evolutionary Reconstruction of a Host Jump in a Plant Virus. Molecular Biology and Evolution, 33(2), 541-553. doi:10.1093/molbev/msv222

Stapleford, K. A., Coffey, L. L., Lay, S., Bordería, A. V., Duong, V., Isakov, O., … Vignuzzi, M. (2014). Emergence and Transmission of Arbovirus Evolutionary Intermediates with Epidemic Potential. Cell Host & Microbe, 15(6), 706-716. doi:10.1016/j.chom.2014.05.008

Remold, S. K., Rambaut, A., & Turner, P. E. (2008). Evolutionary Genomics of Host Adaptation in Vesicular Stomatitis Virus. Molecular Biology and Evolution, 25(6), 1138-1147. doi:10.1093/molbev/msn059

Foll, M., Poh, Y.-P., Renzette, N., Ferrer-Admetlla, A., Bank, C., Shim, H., … Jensen, J. D. (2014). Influenza Virus Drug Resistance: A Time-Sampled Population Genetics Perspective. PLoS Genetics, 10(2), e1004185. doi:10.1371/journal.pgen.1004185

Bedhomme, S., Lafforgue, G., & Elena, S. F. (2011). Multihost Experimental Evolution of a Plant RNA Virus Reveals Local Adaptation and Host-Specific Mutations. Molecular Biology and Evolution, 29(5), 1481-1492. doi:10.1093/molbev/msr314

Hillung, J., Cuevas, J. M., Valverde, S., & Elena, S. F. (2014). EXPERIMENTAL EVOLUTION OF AN EMERGING PLANT VIRUS IN HOST GENOTYPES THAT DIFFER IN THEIR SUSCEPTIBILITY TO INFECTION. Evolution, 68(9), 2467-2480. doi:10.1111/evo.12458

Acevedo, A., Brodsky, L., & Andino, R. (2013). Mutational and fitness landscapes of an RNA virus revealed through population sequencing. Nature, 505(7485), 686-690. doi:10.1038/nature12861

Foll, M., Shim, H., & Jensen, J. D. (2014). WFABC: a Wright-Fisher ABC-based approach for inferring effective population sizes and selection coefficients from time-sampled data. Molecular Ecology Resources, 15(1), 87-98. doi:10.1111/1755-0998.12280

Bordería, A. V., Isakov, O., Moratorio, G., Henningsson, R., Agüera-González, S., Organtini, L., … Vignuzzi, M. (2015). Group Selection and Contribution of Minority Variants during Virus Adaptation Determines Virus Fitness and Phenotype. PLOS Pathogens, 11(5), e1004838. doi:10.1371/journal.ppat.1004838

Kessinger, T. A., Perelson, A. S., & Neher, R. A. (2013). Inferring HIV Escape Rates from Multi-Locus Genotype Data. Frontiers in Immunology, 4. doi:10.3389/fimmu.2013.00252

SCHOLTHOF, K.-B. G., ADKINS, S., CZOSNEK, H., PALUKAITIS, P., JACQUOT, E., HOHN, T., … FOSTER, G. D. (2011). Top 10 plant viruses in molecular plant pathology. Molecular Plant Pathology, 12(9), 938-954. doi:10.1111/j.1364-3703.2011.00752.x

Karasev, A. V., & Gray, S. M. (2013). Continuous and Emerging Challenges of Potato virus Y in Potato. Annual Review of Phytopathology, 51(1), 571-586. doi:10.1146/annurev-phyto-082712-102332

Kogovšek, P., Pompe-Novak, M., Baebler, Š., Rotter, A., Gow, L., Gruden, K., … Ravnikar, M. (2010). Aggressive and mild Potato virus Y isolates trigger different specific responses in susceptible potato plants. Plant Pathology, 59(6), 1121-1132. doi:10.1111/j.1365-3059.2010.02340.x

BAEBLER, Š., KREČIČ-STRES, H., ROTTER, A., KOGOVŠEK, P., CANKAR, K., KOK, E. J., … RAVNIKAR, M. (2009). PVYNTNelicits a diverse gene expression response in different potato genotypes in the first 12 h after inoculation. Molecular Plant Pathology, 10(2), 263-275. doi:10.1111/j.1364-3703.2008.00530.x

Stare, T., Ramšak, Ž., Blejec, A., Stare, K., Turnšek, N., Weckwerth, W., … Gruden, K. (2015). Bimodal dynamics of primary metabolism-related responses in tolerant potato-Potato virus Y interaction. BMC Genomics, 16(1). doi:10.1186/s12864-015-1925-2

Kogovšek, P., Pompe-Novak, M., Petek, M., Fragner, L., Weckwerth, W., & Gruden, K. (2016). Primary Metabolism, Phenylpropanoids and Antioxidant Pathways Are Regulated in Potato as a Response to Potato virus Y Infection. PLOS ONE, 11(1), e0146135. doi:10.1371/journal.pone.0146135

Baebler, Š., Stare, K., Kovač, M., Blejec, A., Prezelj, N., Stare, T., … Gruden, K. (2011). Dynamics of Responses in Compatible Potato - Potato virus Y Interaction Are Modulated by Salicylic Acid. PLoS ONE, 6(12), e29009. doi:10.1371/journal.pone.0029009

Baebler, Š., Witek, K., Petek, M., Stare, K., Tušek-Žnidarič, M., Pompe-Novak, M., … Hennig, J. (2014). Salicylic acid is an indispensable component of the Ny-1 resistance-gene-mediated response against Potato virus Y infection in potato. Journal of Experimental Botany, 65(4), 1095-1109. doi:10.1093/jxb/ert447

Singh, D. P., Moore, C. A., Gilliland, A., & Carr, J. P. (2004). Activation of multiple antiviral defence mechanisms by salicylic acid. Molecular Plant Pathology, 5(1), 57-63. doi:10.1111/j.1364-3703.2004.00203.x

Kutnjak, D., Rupar, M., Gutierrez-Aguirre, I., Curk, T., Kreuze, J. F., & Ravnikar, M. (2015). Deep Sequencing of Virus-Derived Small Interfering RNAs and RNA from Viral Particles Shows Highly Similar Mutational Landscapes of a Plant Virus Population. Journal of Virology, 89(9), 4760-4769. doi:10.1128/jvi.03685-14

Zagordi, O., Bhattacharya, A., Eriksson, N., & Beerenwinkel, N. (2011). ShoRAH: estimating the genetic diversity of a mixed sample from next-generation sequencing data. BMC Bioinformatics, 12(1). doi:10.1186/1471-2105-12-119

Prosperi, M. C. F., & Salemi, M. (2011). QuRe: software for viral quasispecies reconstruction from next-generation sequencing data. Bioinformatics, 28(1), 132-133. doi:10.1093/bioinformatics/btr627

Prabhakaran, S., Rey, M., Zagordi, O., Beerenwinkel, N., & Roth, V. (2014). HIV Haplotype Inference Using a Propagating Dirichlet Process Mixture Model. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 11(1), 182-191. doi:10.1109/tcbb.2013.145

Dynan, W., Fox, K., & Stoddard, B. (2013). Editorial: NAR Surveys the Past, Present and Future of Restriction Endonucleases. Nucleic Acids Research, 42(1), 1-2. doi:10.1093/nar/gkt1324

Töpfer, A., Marschall, T., Bull, R. A., Luciani, F., Schönhuth, A., & Beerenwinkel, N. (2014). Viral Quasispecies Assembly via Maximal Clique Enumeration. PLoS Computational Biology, 10(3), e1003515. doi:10.1371/journal.pcbi.1003515

Schirmer, M., Sloan, W. T., & Quince, C. (2012). Benchmarking of viral haplotype reconstruction programmes: an overview of the capacities and limitations of currently available programmes. Briefings in Bioinformatics, 15(3), 431-442. doi:10.1093/bib/bbs081

Lang, G. I., Rice, D. P., Hickman, M. J., Sodergren, E., Weinstock, G. M., Botstein, D., & Desai, M. M. (2013). Pervasive genetic hitchhiking and clonal interference in forty evolving yeast populations. Nature, 500(7464), 571-574. doi:10.1038/nature12344

Zwart, M. P., Daròs, J.-A., & Elena, S. F. (2012). Effects of Potyvirus Effective Population Size in Inoculated Leaves on Viral Accumulation and the Onset of Symptoms. Journal of Virology, 86(18), 9737-9747. doi:10.1128/jvi.00909-12

Ruiz-Jarabo, C. M., Arias, A., Baranowski, E., Escarmís, C., & Domingo, E. (2000). Memory in Viral Quasispecies. Journal of Virology, 74(8), 3543-3547. doi:10.1128/jvi.74.8.3543-3547.2000

Pruss, G. J., Lawrence, C. B., Bass, T., Li, Q. Q., Bowman, L. H., & Vance, V. (2004). The potyviral suppressor of RNA silencing confers enhanced resistance to multiple pathogens. Virology, 320(1), 107-120. doi:10.1016/j.virol.2003.11.027

Alamillo, J. M., Saénz, P., & García, J. A. (2006). Salicylic acid-mediated and RNA-silencing defense mechanisms cooperate in the restriction of systemic spread of plum pox virus in tobacco. The Plant Journal, 48(2), 217-227. doi:10.1111/j.1365-313x.2006.02861.x

Yu, D., Fan, B., MacFarlane, S. A., & Chen, Z. (2003). Analysis of the Involvement of an Inducible Arabidopsis RNA-Dependent RNA Polymerase in Antiviral Defense. Molecular Plant-Microbe Interactions®, 16(3), 206-216. doi:10.1094/mpmi.2003.16.3.206

Miyashita, S., Ishibashi, K., Kishino, H., & Ishikawa, M. (2015). Viruses Roll the Dice: The Stochastic Behavior of Viral Genome Molecules Accelerates Viral Adaptation at the Cell and Tissue Levels. PLOS Biology, 13(3), e1002094. doi:10.1371/journal.pbio.1002094

Kogovšek, P., Gow, L., Pompe-Novak, M., Gruden, K., Foster, G. D., Boonham, N., & Ravnikar, M. (2008). Single-step RT real-time PCR for sensitive detection and discrimination of Potato virus Y isolates. Journal of Virological Methods, 149(1), 1-11. doi:10.1016/j.jviromet.2008.01.025

Weller, S. A., Elphinstone, J. G., Smith, N. C., Boonham, N., & Stead, D. E. (2000). Detection of Ralstonia solanacearumStrains with a Quantitative, Multiplex, Real-Time, Fluorogenic PCR (TaqMan) Assay. Applied and Environmental Microbiology, 66(7), 2853-2858. doi:10.1128/aem.66.7.2853-2858.2000

Gutiérrez-Aguirre, I., Rački, N., Dreo, T., & Ravnikar, M. (2015). Droplet Digital PCR for Absolute Quantification of Pathogens. Methods in Molecular Biology, 331-347. doi:10.1007/978-1-4939-2620-6_24

Rupar, M., Faurez, F., Tribodet, M., Gutiérrez-Aguirre, I., Delaunay, A., Glais, L., … Ravnikar, M. (2015). Fluorescently Tagged Potato virus Y: A Versatile Tool for Functional Analysis of Plant-Virus Interactions. Molecular Plant-Microbe Interactions®, 28(7), 739-750. doi:10.1094/mpmi-07-14-0218-ta

Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25(14), 1754-1760. doi:10.1093/bioinformatics/btp324

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., … Homer, N. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25(16), 2078-2079. doi:10.1093/bioinformatics/btp352

Nelson, C. W., Moncla, L. H., & Hughes, A. L. (2015). SNPGenie: estimating evolutionary parameters to detect natural selection using pooled next-generation sequencing data: Table 1. Bioinformatics, btv449. doi:10.1093/bioinformatics/btv449

Suzuki R Shimodaira H . 2015. pvclust: hierarchical clustering with P values via multiscale bootstrap resampling. R package version 2.0-0. https://cran.r-project.org/web/packages/pvclust/ .

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem