Rakhshani, A. E. (1987). Measurement of dispersion in electrodeposited Cu2O. Journal of Applied Physics, 62(4), 1528-1529. doi:10.1063/1.339619
Chen, L.-C. (2013). Review of preparation and optoelectronic characteristics of Cu2O-based solar cells with nanostructure. Materials Science in Semiconductor Processing, 16(5), 1172-1185. doi:10.1016/j.mssp.2012.12.028
Hsu, Y.-K., Lin, H.-H., Wu, J.-R., Chen, M.-H., Chen, Y.-C., & Lin, Y.-G. (2014). Electrochemical growth and characterization of a p-Cu2O thin film on n-ZnO nanorods for solar cell application. RSC Advances, 4(15), 7655. doi:10.1039/c3ra47188h
[+]
Rakhshani, A. E. (1987). Measurement of dispersion in electrodeposited Cu2O. Journal of Applied Physics, 62(4), 1528-1529. doi:10.1063/1.339619
Chen, L.-C. (2013). Review of preparation and optoelectronic characteristics of Cu2O-based solar cells with nanostructure. Materials Science in Semiconductor Processing, 16(5), 1172-1185. doi:10.1016/j.mssp.2012.12.028
Hsu, Y.-K., Lin, H.-H., Wu, J.-R., Chen, M.-H., Chen, Y.-C., & Lin, Y.-G. (2014). Electrochemical growth and characterization of a p-Cu2O thin film on n-ZnO nanorods for solar cell application. RSC Advances, 4(15), 7655. doi:10.1039/c3ra47188h
Chou, S.-M., Hon, M.-H., Leu, I.-C., & Lee, Y.-H. (2008). Al-Doped ZnO∕Cu[sub 2]O Heterojunction Fabricated on (200) and (111)-Orientated Cu[sub 2]O Substrates. Journal of The Electrochemical Society, 155(11), H923. doi:10.1149/1.2980424
Siegfried, M. J., & Choi, K.-S. (2004). Electrochemical Crystallization of Cuprous Oxide with Systematic Shape Evolution. Advanced Materials, 16(19), 1743-1746. doi:10.1002/adma.200400177
Siegfried, M. J., & Choi, K.-S. (2005). Directing the Architecture of Cuprous Oxide Crystals during Electrochemical Growth. Angewandte Chemie International Edition, 44(21), 3218-3223. doi:10.1002/anie.200463018
Yang, W.-Y., Kim, W.-G., & Rhee, S.-W. (2008). Radio frequency sputter deposition of single phase cuprous oxide using Cu2O as a target material and its resistive switching properties. Thin Solid Films, 517(2), 967-971. doi:10.1016/j.tsf.2008.08.184
Reddy, A. S., Uthanna, S., & Reddy, P. S. (2007). Properties of dc magnetron sputtered Cu2O films prepared at different sputtering pressures. Applied Surface Science, 253(12), 5287-5292. doi:10.1016/j.apsusc.2006.11.051
Laik, B., Poizot, P., & Tarascon, J.-M. (2002). The Electrochemical Quartz Crystal Microbalance as a Means for Studying the Reactivity of Cu[sub 2]O toward Lithium. Journal of The Electrochemical Society, 149(3), A251. doi:10.1149/1.1445430
Fu, L. J., Gao, J., Zhang, T., Cao, Q., Yang, L. C., Wu, Y. P., … Wu, H. Q. (2007). Preparation of Cu2O particles with different morphologies and their application in lithium ion batteries. Journal of Power Sources, 174(2), 1197-1200. doi:10.1016/j.jpowsour.2007.06.030
Zhou, Y., & Switzer, J. A. (1998). Electrochemical Deposition and Microstructure of Copper (I) Oxide Films. Scripta Materialia, 38(11), 1731-1738. doi:10.1016/s1359-6462(98)00091-8
Budevski, E., Staikov, G., & Lorenz, W. J. (2000). Electrocrystallization. Electrochimica Acta, 45(15-16), 2559-2574. doi:10.1016/s0013-4686(00)00353-4
Morales, J., Sánchez, L., Bijani, S., Martı́nez, L., Gabás, M., & Ramos-Barrado, J. R. (2005). Electrodeposition of Cu[sub 2]O: An Excellent Method for Obtaining Films of Controlled Morphology and Good Performance in Li-Ion Batteries. Electrochemical and Solid-State Letters, 8(3), A159. doi:10.1149/1.1854126
Holzschuh, H., & Suhr, H. (1990). Deposition of copper oxide (Cu2O, CuO) thin films at high temperatures by plasma-enhanced CVD. Applied Physics A Solids and Surfaces, 51(6), 486-490. doi:10.1007/bf00324731
Jeong, S., & Aydil, E. S. (2009). Heteroepitaxial growth of Cu2O thin film on ZnO by metal organic chemical vapor deposition. Journal of Crystal Growth, 311(17), 4188-4192. doi:10.1016/j.jcrysgro.2009.07.020
Pruna, A., Pullini, D., & Busquets, D. (2015). Effect of AZO film as seeding substrate on the electrodeposition and properties of Al-doped ZnO nanorod arrays. Ceramics International, 41(10), 14492-14500. doi:10.1016/j.ceramint.2015.07.087
Pruna, A., Pullini, D., Tamvakos, D., Tamvakos, A., & Busquets-Mataix, D. (2015). Effect of tin-doped indium oxide film on electrodeposition of ZnO nanostructures. Materials Science and Technology, 31(14), 1794-1799. doi:10.1179/1743284715y.0000000016
Pruna, A., Reyes-Tolosa, M. D., Pullini, D., Hernandez-Fenollosa, M. A., & Busquets-Mataix, D. (2015). Seed-free electrodeposition of ZnO bi-pods on electrophoretically-reduced graphene oxide for optoelectronic applications. Ceramics International, 41(2), 2381-2388. doi:10.1016/j.ceramint.2014.10.052
Cembrero, J., Pruna, A., Pullini, D., & Busquets-Mataix, D. (2014). Effect of combined chemical and electrochemical reduction of graphene oxide on morphology and structure of electrodeposited ZnO. Ceramics International, 40(7), 10351-10357. doi:10.1016/j.ceramint.2014.03.008
Prună, A., Pullini, D., & Mataix, D. B. (2012). Influence of Deposition Potential on Structure of ZnO Nanowires Synthesized in Track-Etched Membranes. Journal of The Electrochemical Society, 159(4), E92-E98. doi:10.1149/2.003205jes
Jiang, X., Zhang, M., Shi, S., He, G., Song, X., & Sun, Z. (2014). Microstructure and optical properties of nanocrystalline Cu2O thin films prepared by electrodeposition. Nanoscale Research Letters, 9(1), 219. doi:10.1186/1556-276x-9-219
Yu, X., Li, X., Zheng, G., Wei, Y., Zhang, A., & Yao, B. (2013). Preparation and properties of KCl-doped Cu2O thin film by electrodeposition. Applied Surface Science, 270, 340-345. doi:10.1016/j.apsusc.2013.01.026
Bijani, S., Schrebler, R., Dalchiele, E. A., Gabás, M., Martínez, L., & Ramos-Barrado, J. R. (2011). Study of the Nucleation and Growth Mechanisms in the Electrodeposition of Micro- and Nanostructured Cu2O Thin Films. The Journal of Physical Chemistry C, 115(43), 21373-21382. doi:10.1021/jp208535e
[-]