- -

Factorial electrochemical design for tailoring of morphological and optical properties of Cu2O

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Factorial electrochemical design for tailoring of morphological and optical properties of Cu2O

Show simple item record

Files in this item

dc.contributor.author Cembrero-Coca, Paula es_ES
dc.contributor.author Cembrero Cil, Jesús es_ES
dc.contributor.author Busquets Mataix, David Jeronimo es_ES
dc.contributor.author Pérez Puig, Miguel Angel es_ES
dc.contributor.author Marí, B. es_ES
dc.contributor.author Pruna, Alina Iuliana es_ES
dc.date.accessioned 2020-07-31T03:31:39Z
dc.date.available 2020-07-31T03:31:39Z
dc.date.issued 2017 es_ES
dc.identifier.issn 0267-0836 es_ES
dc.identifier.uri http://hdl.handle.net/10251/149087
dc.description.abstract [EN] The electrodeposition of cuprous oxide (Cu2O) onto FTO-coated glass substrate was studied by using a statistical approach in order to control the Cu2O morphology and optical properties. The factorial design considered four electrodeposition conditions at two representative levels as input variables (electrolyte temperature and pH, deposition potential and duration) and the deposition charge and morphology of obtained Cu2O as the output variables. The morphology analysis showed the highest influence on crystal shape was exhibited by electrolyte temperature and pH, reaching significance levels of 95 and 98%, respectively. Temperature as low as 35°C and pH 12.2 results in cubic morphology, while other parameters result in octahedron shape. The highest absorbance was exhibited by the Cu2O with cubic morphology. es_ES
dc.description.sponsorship AP acknowledges financial support from Romanian National Authority for Scientific Research and Innovation, CNCS - UEFISCDI (project number PN-II-RU-TE-2014-4-0806]. es_ES
dc.language Inglés es_ES
dc.publisher Maney Publishing es_ES
dc.relation.ispartof Materials Science and Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Cuprous oxide es_ES
dc.subject Electrodeposition es_ES
dc.subject Morphology es_ES
dc.subject Optical es_ES
dc.subject Properties es_ES
dc.subject Statistic design es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Factorial electrochemical design for tailoring of morphological and optical properties of Cu2O es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/02670836.2017.1349595 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UEFISCDI//PN-II-RU-TE-2014-4-0806/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials es_ES
dc.description.bibliographicCitation Cembrero-Coca, P.; Cembrero Cil, J.; Busquets Mataix, DJ.; Pérez Puig, MA.; Marí, B.; Pruna, AI. (2017). Factorial electrochemical design for tailoring of morphological and optical properties of Cu2O. Materials Science and Technology. 33(17):2102-2109. https://doi.org/10.1080/02670836.2017.1349595 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1080/02670836.2017.1349595 es_ES
dc.description.upvformatpinicio 2102 es_ES
dc.description.upvformatpfin 2109 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 33 es_ES
dc.description.issue 17 es_ES
dc.relation.pasarela S\351885 es_ES
dc.contributor.funder Executive Agency for Higher Education, Scientific Research, Development and Innovation Funding, Rumanía es_ES
dc.description.references Rakhshani, A. E. (1987). Measurement of dispersion in electrodeposited Cu2O. Journal of Applied Physics, 62(4), 1528-1529. doi:10.1063/1.339619 es_ES
dc.description.references Chen, L.-C. (2013). Review of preparation and optoelectronic characteristics of Cu2O-based solar cells with nanostructure. Materials Science in Semiconductor Processing, 16(5), 1172-1185. doi:10.1016/j.mssp.2012.12.028 es_ES
dc.description.references Hsu, Y.-K., Lin, H.-H., Wu, J.-R., Chen, M.-H., Chen, Y.-C., & Lin, Y.-G. (2014). Electrochemical growth and characterization of a p-Cu2O thin film on n-ZnO nanorods for solar cell application. RSC Advances, 4(15), 7655. doi:10.1039/c3ra47188h es_ES
dc.description.references Chou, S.-M., Hon, M.-H., Leu, I.-C., & Lee, Y.-H. (2008). Al-Doped ZnO∕Cu[sub 2]O Heterojunction Fabricated on (200) and (111)-Orientated Cu[sub 2]O Substrates. Journal of The Electrochemical Society, 155(11), H923. doi:10.1149/1.2980424 es_ES
dc.description.references Siegfried, M. J., & Choi, K.-S. (2004). Electrochemical Crystallization of Cuprous Oxide with Systematic Shape Evolution. Advanced Materials, 16(19), 1743-1746. doi:10.1002/adma.200400177 es_ES
dc.description.references Siegfried, M. J., & Choi, K.-S. (2005). Directing the Architecture of Cuprous Oxide Crystals during Electrochemical Growth. Angewandte Chemie International Edition, 44(21), 3218-3223. doi:10.1002/anie.200463018 es_ES
dc.description.references Yang, W.-Y., Kim, W.-G., & Rhee, S.-W. (2008). Radio frequency sputter deposition of single phase cuprous oxide using Cu2O as a target material and its resistive switching properties. Thin Solid Films, 517(2), 967-971. doi:10.1016/j.tsf.2008.08.184 es_ES
dc.description.references Reddy, A. S., Uthanna, S., & Reddy, P. S. (2007). Properties of dc magnetron sputtered Cu2O films prepared at different sputtering pressures. Applied Surface Science, 253(12), 5287-5292. doi:10.1016/j.apsusc.2006.11.051 es_ES
dc.description.references Laik, B., Poizot, P., & Tarascon, J.-M. (2002). The Electrochemical Quartz Crystal Microbalance as a Means for Studying the Reactivity of Cu[sub 2]O toward Lithium. Journal of The Electrochemical Society, 149(3), A251. doi:10.1149/1.1445430 es_ES
dc.description.references Fu, L. J., Gao, J., Zhang, T., Cao, Q., Yang, L. C., Wu, Y. P., … Wu, H. Q. (2007). Preparation of Cu2O particles with different morphologies and their application in lithium ion batteries. Journal of Power Sources, 174(2), 1197-1200. doi:10.1016/j.jpowsour.2007.06.030 es_ES
dc.description.references Zhou, Y., & Switzer, J. A. (1998). Electrochemical Deposition and Microstructure of Copper (I) Oxide Films. Scripta Materialia, 38(11), 1731-1738. doi:10.1016/s1359-6462(98)00091-8 es_ES
dc.description.references Budevski, E., Staikov, G., & Lorenz, W. J. (2000). Electrocrystallization. Electrochimica Acta, 45(15-16), 2559-2574. doi:10.1016/s0013-4686(00)00353-4 es_ES
dc.description.references Morales, J., Sánchez, L., Bijani, S., Martı́nez, L., Gabás, M., & Ramos-Barrado, J. R. (2005). Electrodeposition of Cu[sub 2]O: An Excellent Method for Obtaining Films of Controlled Morphology and Good Performance in Li-Ion Batteries. Electrochemical and Solid-State Letters, 8(3), A159. doi:10.1149/1.1854126 es_ES
dc.description.references Holzschuh, H., & Suhr, H. (1990). Deposition of copper oxide (Cu2O, CuO) thin films at high temperatures by plasma-enhanced CVD. Applied Physics A Solids and Surfaces, 51(6), 486-490. doi:10.1007/bf00324731 es_ES
dc.description.references Jeong, S., & Aydil, E. S. (2009). Heteroepitaxial growth of Cu2O thin film on ZnO by metal organic chemical vapor deposition. Journal of Crystal Growth, 311(17), 4188-4192. doi:10.1016/j.jcrysgro.2009.07.020 es_ES
dc.description.references Pruna, A., Pullini, D., & Busquets, D. (2015). Effect of AZO film as seeding substrate on the electrodeposition and properties of Al-doped ZnO nanorod arrays. Ceramics International, 41(10), 14492-14500. doi:10.1016/j.ceramint.2015.07.087 es_ES
dc.description.references Pruna, A., Pullini, D., Tamvakos, D., Tamvakos, A., & Busquets-Mataix, D. (2015). Effect of tin-doped indium oxide film on electrodeposition of ZnO nanostructures. Materials Science and Technology, 31(14), 1794-1799. doi:10.1179/1743284715y.0000000016 es_ES
dc.description.references Pruna, A., Reyes-Tolosa, M. D., Pullini, D., Hernandez-Fenollosa, M. A., & Busquets-Mataix, D. (2015). Seed-free electrodeposition of ZnO bi-pods on electrophoretically-reduced graphene oxide for optoelectronic applications. Ceramics International, 41(2), 2381-2388. doi:10.1016/j.ceramint.2014.10.052 es_ES
dc.description.references Cembrero, J., Pruna, A., Pullini, D., & Busquets-Mataix, D. (2014). Effect of combined chemical and electrochemical reduction of graphene oxide on morphology and structure of electrodeposited ZnO. Ceramics International, 40(7), 10351-10357. doi:10.1016/j.ceramint.2014.03.008 es_ES
dc.description.references Prună, A., Pullini, D., & Mataix, D. B. (2012). Influence of Deposition Potential on Structure of ZnO Nanowires Synthesized in Track-Etched Membranes. Journal of The Electrochemical Society, 159(4), E92-E98. doi:10.1149/2.003205jes es_ES
dc.description.references Jiang, X., Zhang, M., Shi, S., He, G., Song, X., & Sun, Z. (2014). Microstructure and optical properties of nanocrystalline Cu2O thin films prepared by electrodeposition. Nanoscale Research Letters, 9(1), 219. doi:10.1186/1556-276x-9-219 es_ES
dc.description.references Yu, X., Li, X., Zheng, G., Wei, Y., Zhang, A., & Yao, B. (2013). Preparation and properties of KCl-doped Cu2O thin film by electrodeposition. Applied Surface Science, 270, 340-345. doi:10.1016/j.apsusc.2013.01.026 es_ES
dc.description.references Bijani, S., Schrebler, R., Dalchiele, E. A., Gabás, M., Martínez, L., & Ramos-Barrado, J. R. (2011). Study of the Nucleation and Growth Mechanisms in the Electrodeposition of Micro- and Nanostructured Cu2O Thin Films. The Journal of Physical Chemistry C, 115(43), 21373-21382. doi:10.1021/jp208535e es_ES


This item appears in the following Collection(s)

Show simple item record