- -

Control of zeolite framework flexibility and pore topology for separation of ethane and ethylene

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by


  • Estadisticas de Uso

Control of zeolite framework flexibility and pore topology for separation of ethane and ethylene

Show full item record

Bereciartua-Pérez, PJ.; Cantin Sanz, A.; Corma Canós, A.; Jorda Moret, JL.; Palomino Roca, M.; Rey Garcia, F.; Valencia Valencia, S.... (2017). Control of zeolite framework flexibility and pore topology for separation of ethane and ethylene. Science. 358(6366):1068-1071. https://doi.org/10.1126/science.aao0092

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/149541

Files in this item

Item Metadata

Title: Control of zeolite framework flexibility and pore topology for separation of ethane and ethylene
Author: Bereciartua-Pérez, Pablo Javier Cantin Sanz, Angel Corma Canós, Avelino Jorda Moret, Jose Luis Palomino Roca, Miguel Rey Garcia, Fernando Valencia Valencia, Susana Corcoran Jr., Edward W. Kortunov, Pavel Ravikovitch, Peter I. Burton, Allen Yoon, Chris Wang, Yu Paur, Charanjit Guzman, Javier Bishop, Adeana R. Casty, Gary L.
UPV Unit: Universitat Politècnica de València. Departamento de Química - Departament de Química
Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Issued date:
[EN] The discovery of new materials for separating ethylene from ethane by adsorption, instead of using cryogenic distillation, is a key milestone for molecular separations because of the multiple and widely extended uses ...[+]
Subjects: Adsorption , Ethylene , Ethane , Zeolite
Copyrigths: Cerrado
Science. (issn: 0036-8075 )
DOI: 10.1126/science.aao0092
American Association for the Advancement of Science (AAAS)
Publisher version: https://doi.org/10.1126/science.aao0092
Project ID:
info:eu-repo/grantAgreement/EC/H2020/671093/EU/MATching zeolite SYNthesis with CATalytic activity/
We gratefully acknowledge financial support from ExxonMobil Research and Engineering Company, Instituto de Tecnologia Quimica researchers also thank the European Research Council (grant ERC-2014-AdG-671093 "MATching zeolite ...[+]
Type: Artículo


L. Kniel, O. Winter, K. Stork, in Ethylene, Keystone to the Petrochemical Industry (Chemical Industries) (Taylor & Francis, 1980), pp. 14–35.

H. A. Wittcoff, B. G. Reuben, J. S. Plotkin, “Chemicals and polymers from ethylene” in Industrial Organic Chemicals (Wiley, ed. 2, 2005), pp. 100–166.

Corma, A., Corresa, E., Mathieu, Y., Sauvanaud, L., Al-Bogami, S., Al-Ghrami, M. S., & Bourane, A. (2017). Crude oil to chemicals: light olefins from crude oil. Catalysis Science & Technology, 7(1), 12-46. doi:10.1039/c6cy01886f [+]
L. Kniel, O. Winter, K. Stork, in Ethylene, Keystone to the Petrochemical Industry (Chemical Industries) (Taylor & Francis, 1980), pp. 14–35.

H. A. Wittcoff, B. G. Reuben, J. S. Plotkin, “Chemicals and polymers from ethylene” in Industrial Organic Chemicals (Wiley, ed. 2, 2005), pp. 100–166.

Corma, A., Corresa, E., Mathieu, Y., Sauvanaud, L., Al-Bogami, S., Al-Ghrami, M. S., & Bourane, A. (2017). Crude oil to chemicals: light olefins from crude oil. Catalysis Science & Technology, 7(1), 12-46. doi:10.1039/c6cy01886f

Sadrameli, S. M. (2015). Thermal/catalytic cracking of hydrocarbons for the production of olefins: A state-of-the-art review I: Thermal cracking review. Fuel, 140, 102-115. doi:10.1016/j.fuel.2014.09.034

Anson, A., Wang, Y., Lin, C. C. H., Kuznicki, T. M., & Kuznicki, S. M. (2008). Adsorption of ethane and ethylene on modified ETS-10. Chemical Engineering Science, 63(16), 4171-4175. doi:10.1016/j.ces.2008.05.038

Sholl, D. S., & Lively, R. P. (2016). Seven chemical separations to change the world. Nature, 532(7600), 435-437. doi:10.1038/532435a

Martins, V. F. D., Ribeiro, A. M., Santos, J. C., Loureiro, J. M., Gleichmann, K., Ferreira, A., & Rodrigues, A. E. (2016). Development of gas-phase SMB technology for light olefin/paraffin separations. AIChE Journal, 62(7), 2490-2500. doi:10.1002/aic.15238

Narin, G., Martins, V. F. D., Campo, M., Ribeiro, A. M., Ferreira, A., Santos, J. C., … Rodrigues, A. E. (2014). Light olefins/paraffins separation with 13X zeolite binderless beads. Separation and Purification Technology, 133, 452-475. doi:10.1016/j.seppur.2014.06.060

National Research Council, Separation Technologies for the Industries of the Future (National Materials Advisory Board, Commission on Engineering and Technical Systems, National Research Council, Publication NMAB-487-3, National Academy Press, 1998).

G. E. Keller, “High-priority separation materials R&D needs in the chemicals and petrochemicals industries” in Materials for Separation Technologies: Energy and Emission Reduction Opportunities (Oak Ridge National Laboratory and BCS, 2005), appendix D, pp. 87–97.

Safarik, D. J., & Eldridge, R. B. (1998). Olefin/Paraffin Separations by Reactive Absorption:  A Review. Industrial & Engineering Chemistry Research, 37(7), 2571-2581. doi:10.1021/ie970897h

Rege, S. U., Padin, J., & Yang, R. T. (1998). Olefin/paraffin separations by adsorption: π-Complexation vs. kinetic separation. AIChE Journal, 44(4), 799-809. doi:10.1002/aic.690440405

G. E. Keller, A. E. Marcinkowsky, S. K. Verma, K. D. Williamson, “Olefin recovery and purification via silver complexing” in Separation and Purification Technology, N. N. Li, J. M. Calo, Eds. (Marcel Dekker, 1992), pp. 59–83.

Yang, R. T., & Kikkinides, E. S. (1995). New sorbents for olefin/paraffin separations by adsorption viaπ -complexation. AIChE Journal, 41(3), 509-517. doi:10.1002/aic.690410309

Aguado, S., Bergeret, G., Daniel, C., & Farrusseng, D. (2012). Absolute Molecular Sieve Separation of Ethylene/Ethane Mixtures with Silver Zeolite A. Journal of the American Chemical Society, 134(36), 14635-14637. doi:10.1021/ja305663k

Van Miltenburg, A., Zhu, W., Kapteijn, F., & Moulijn, J. A. (2006). Adsorptive Separation of Light Olefin/Paraffin Mixtures. Chemical Engineering Research and Design, 84(5), 350-354. doi:10.1205/cherd05021

Min Wang, Q., Shen, D., Bülow, M., Ling Lau, M., Deng, S., Fitch, F. R., … Semanscin, J. (2002). Metallo-organic molecular sieve for gas separation and purification. Microporous and Mesoporous Materials, 55(2), 217-230. doi:10.1016/s1387-1811(02)00405-5

Martins, V. F. D., Ribeiro, A. M., Ferreira, A., Lee, U.-H., Hwang, Y. K., Chang, J.-S., … Rodrigues, A. E. (2015). Ethane/ethylene separation on a copper benzene-1,3,5-tricarboxylate MOF. Separation and Purification Technology, 149, 445-456. doi:10.1016/j.seppur.2015.06.012

Bloch, E. D., Queen, W. L., Krishna, R., Zadrozny, J. M., Brown, C. M., & Long, J. R. (2012). Hydrocarbon Separations in a Metal-Organic Framework with Open Iron(II) Coordination Sites. Science, 335(6076), 1606-1610. doi:10.1126/science.1217544

Böhme, U., Barth, B., Paula, C., Kuhnt, A., Schwieger, W., Mundstock, A., … Hartmann, M. (2013). Ethene/Ethane and Propene/Propane Separation via the Olefin and Paraffin Selective Metal–Organic Framework Adsorbents CPO-27 and ZIF-8. Langmuir, 29(27), 8592-8600. doi:10.1021/la401471g

Maghsoudi, H. (2016). Comparative study of adsorbents performance in ethylene/ethane separation. Adsorption, 22(7), 985-992. doi:10.1007/s10450-016-9805-x

Mofarahi, M., & Salehi, S. M. (2012). Pure and binary adsorption isotherms of ethylene and ethane on zeolite 5A. Adsorption, 19(1), 101-110. doi:10.1007/s10450-012-9423-1

Shi, M., Avila, A. M., Yang, F., Kuznicki, T. M., & Kuznicki, S. M. (2011). High pressure adsorptive separation of ethylene and ethane on Na-ETS-10. Chemical Engineering Science, 66(12), 2817-2822. doi:10.1016/j.ces.2011.03.046

Gücüyener, C., van den Bergh, J., Gascon, J., & Kapteijn, F. (2010). Ethane/Ethene Separation Turned on Its Head: Selective Ethane Adsorption on the Metal−Organic Framework ZIF-7 through a Gate-Opening Mechanism. Journal of the American Chemical Society, 132(50), 17704-17706. doi:10.1021/ja1089765

Hartmann, M., Böhme, U., Hovestadt, M., & Paula, C. (2015). Adsorptive Separation of Olefin/Paraffin Mixtures with ZIF-4. Langmuir, 31(45), 12382-12389. doi:10.1021/acs.langmuir.5b02907

Olson, D. H., Yang, X., & Camblor, M. A. (2004). ITQ-12:  A Zeolite Having Temperature Dependent Adsorption Selectivity and Potential for Propene Separation. The Journal of Physical Chemistry B, 108(30), 11044-11048. doi:10.1021/jp040216d

Palomino, M., Cantín, A., Corma, A., Leiva, S., Rey, F., & Valencia, S. (2007). Pure silica ITQ-32 zeolite allows separation of linear olefins from paraffins. Chem. Commun., (12), 1233-1235. doi:10.1039/b700358g

Zhu, W., Kapteijn, F., Moulijn, J. A., den Exter, M. C., & Jansen, J. C. (2000). Shape Selectivity in Adsorption on the All-Silica DD3R. Langmuir, 16(7), 3322-3329. doi:10.1021/la9914007

Corma, A., Rey, F., Rius, J., Sabater, M. J., & Valencia, S. (2004). Supramolecular self-assembled molecules as organic directing agent for synthesis of zeolites. Nature, 431(7006), 287-290. doi:10.1038/nature02909

Barrett, P. A., Boix, T., Puche, M., Olson, D. H., Jordan, E., Koller, H., & Camblor, M. A. (2003). ITQ-12: a new microporous silica polymorph potentially useful for light hydrocarbon separationsElectronic supplementary information (ESI) available: details of the structure solution, Rietveld refinements in space groups C2/m and Cm and energy minimisation calculations in C2/m, Cm and C2. See http://www.rsc.org/suppdata/cc/b3/b306440a/. Chemical Communications, (17), 2114. doi:10.1039/b306440a

Ruthven, D. M., & Reyes, S. C. (2007). Adsorptive separation of light olefins from paraffins. Microporous and Mesoporous Materials, 104(1-3), 59-66. doi:10.1016/j.micromeso.2007.01.005

A. Corma Canos, F. Rey Garcia, S. Valencia Valencia, A. Cantin Sanz, M. Palomino Roca, Patent ES2554648 (B1) (2015).

Vidal-Moya, J. A., Blasco, T., Rey, F., Corma, A., & Puche, M. (2003). Distribution of Fluorine and Germanium in a New Zeolite Structure ITQ-13 Studied by19F Nuclear Magnetic Resonance. Chemistry of Materials, 15(21), 3961-3963. doi:10.1021/cm034515b

Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9-10), 1051-1069. doi:10.1515/pac-2014-1117

Jiang, J., Jorda, J. L., Yu, J., Baumes, L. A., Mugnaioli, E., Diaz-Cabanas, M. J., … Corma, A. (2011). Synthesis and Structure Determination of the Hierarchical Meso-Microporous Zeolite ITQ-43. Science, 333(6046), 1131-1134. doi:10.1126/science.1208652

Yun, Y., Zou, X., Hovmöller, S., & Wan, W. (2015). Three-dimensional electron diffraction as a complementary technique to powder X-ray diffraction for phase identification and structure solution of powders. IUCrJ, 2(2), 267-282. doi:10.1107/s2052252514028188

Gemmi, M., La Placa, M. G. I., Galanis, A. S., Rauch, E. F., & Nicolopoulos, S. (2015). Fast electron diffraction tomography. Journal of Applied Crystallography, 48(3), 718-727. doi:10.1107/s1600576715004604

Simancas, J., Simancas, R., Bereciartua, P. J., Jorda, J. L., Rey, F., Corma, A., … Mugnaioli, E. (2016). Ultrafast Electron Diffraction Tomography for Structure Determination of the New Zeolite ITQ-58. Journal of the American Chemical Society, 138(32), 10116-10119. doi:10.1021/jacs.6b06394

Awati, R. V., Ravikovitch, P. I., & Sholl, D. S. (2013). Efficient and Accurate Methods for Characterizing Effects of Framework Flexibility on Molecular Diffusion in Zeolites: CH4 Diffusion in Eight Member Ring Zeolites. The Journal of Physical Chemistry C, 117(26), 13462-13473. doi:10.1021/jp402959t

Boulfelfel, S. E., Ravikovitch, P. I., & Sholl, D. S. (2015). Modeling Diffusion of Linear Hydrocarbons in Silica Zeolite LTA Using Transition Path Sampling. The Journal of Physical Chemistry C, 119(27), 15643-15653. doi:10.1021/acs.jpcc.5b01633

Gutiérrez-Sevillano, J. J., Calero, S., Hamad, S., Grau-Crespo, R., Rey, F., Valencia, S., … Ruiz-Salvador, A. R. (2016). Critical Role of Dynamic Flexibility in Ge-Containing Zeolites: Impact on Diffusion. Chemistry - A European Journal, 22(29), 10036-10043. doi:10.1002/chem.201600983

J. Karger, D. M. Ruthven, D. N. Theodorou, Diffusion in Nanoporous Materials (Wiley, 2012).

Zhang, C., Lively, R. P., Zhang, K., Johnson, J. R., Karvan, O., & Koros, W. J. (2012). Unexpected Molecular Sieving Properties of Zeolitic Imidazolate Framework-8. The Journal of Physical Chemistry Letters, 3(16), 2130-2134. doi:10.1021/jz300855a

Haldoupis, E., Watanabe, T., Nair, S., & Sholl, D. S. (2012). Quantifying Large Effects of Framework Flexibility on Diffusion in MOFs: CH4and CO2in ZIF-8. ChemPhysChem, 13(15), 3449-3452. doi:10.1002/cphc.201200529

Verploegh, R. J., Nair, S., & Sholl, D. S. (2015). Temperature and Loading-Dependent Diffusion of Light Hydrocarbons in ZIF-8 as Predicted Through Fully Flexible Molecular Simulations. Journal of the American Chemical Society, 137(50), 15760-15771. doi:10.1021/jacs.5b08746

Vidoni, A., & Ruthven, D. M. (2012). Diffusion of C2H6 and C2H4 in DDR Zeolite. Industrial & Engineering Chemistry Research, 51(3), 1383-1390. doi:10.1021/ie202449q

Rungta, M., Xu, L., & Koros, W. J. (2012). Carbon molecular sieve dense film membranes derived from Matrimid® for ethylene/ethane separation. Carbon, 50(4), 1488-1502. doi:10.1016/j.carbon.2011.11.019

Zheng, Y., Hu, N., Wang, H., Bu, N., Zhang, F., & Zhou, R. (2015). Preparation of steam-stable high-silica CHA (SSZ-13) membranes for CO2/CH4 and C2H4/C2H6 separation. Journal of Membrane Science, 475, 303-310. doi:10.1016/j.memsci.2014.10.048

Bachman, J. E., Smith, Z. P., Li, T., Xu, T., & Long, J. R. (2016). Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal–organic framework nanocrystals. Nature Materials, 15(8), 845-849. doi:10.1038/nmat4621

Hedlund, J., Sterte, J., Anthonis, M., Bons, A.-J., Carstensen, B., Corcoran, N., … Peters, J. (2002). High-flux MFI membranes. Microporous and Mesoporous Materials, 52(3), 179-189. doi:10.1016/s1387-1811(02)00316-5

Kolb, U., Mugnaioli, E., & Gorelik, T. E. (2011). Automated electron diffraction tomography - a new tool for nano crystal structure analysis. Crystal Research and Technology, 46(6), 542-554. doi:10.1002/crat.201100036

Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., … Polidori, G. (2015). Crystal structure determination and refinementviaSIR2014. Journal of Applied Crystallography, 48(1), 306-309. doi:10.1107/s1600576715001132

Petříček, V., Dušek, M., & Palatinus, L. (2014). Crystallographic Computing System JANA2006: General features. Zeitschrift für Kristallographie - Crystalline Materials, 229(5). doi:10.1515/zkri-2014-1737

Clark, S. J., Segall, M. D., Pickard, C. J., Hasnip, P. J., Probert, M. I. J., Refson, K., & Payne, M. C. (2005). First principles methods using CASTEP. Zeitschrift für Kristallographie - Crystalline Materials, 220(5/6). doi:10.1524/zkri.220.5.567.65075

Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/physrevlett.77.3865

Grimme, S. (2006). Semiempirical GGA-type density functional constructed with a long-range dispersion correction. Journal of Computational Chemistry, 27(15), 1787-1799. doi:10.1002/jcc.20495

McNellis, E. R., Meyer, J., & Reuter, K. (2009). Azobenzene at coinage metal surfaces: Role of dispersive van der Waals interactions. Physical Review B, 80(20). doi:10.1103/physrevb.80.205414

Perdew, J. P., Ruzsinszky, A., Csonka, G. I., Vydrov, O. A., Scuseria, G. E., Constantin, L. A., … Burke, K. (2008). Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Physical Review Letters, 100(13). doi:10.1103/physrevlett.100.136406

Tuckerman, M. E., Liu, Y., Ciccotti, G., & Martyna, G. J. (2001). Non-Hamiltonian molecular dynamics: Generalizing Hamiltonian phase space principles to non-Hamiltonian systems. The Journal of Chemical Physics, 115(4), 1678-1702. doi:10.1063/1.1378321

Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182-7190. doi:10.1063/1.328693

Niklasson, A. M. N., Steneteg, P., & Bock, N. (2011). Extended Lagrangian free energy molecular dynamics. The Journal of Chemical Physics, 135(16), 164111. doi:10.1063/1.3656977

Boulfelfel, S. E., Ravikovitch, P. I., Koziol, L., & Sholl, D. S. (2016). Improved Hill–Sauer Force Field for Accurate Description of Pores in 8-Ring Zeolites. The Journal of Physical Chemistry C, 120(26), 14140-14148. doi:10.1021/acs.jpcc.6b03674

Talu, O., & Myers, A. L. (2001). Reference potentials for adsorption of helium, argon, methane, and krypton in high-silica zeolites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 187-188, 83-93. doi:10.1016/s0927-7757(01)00628-8

Wick, C. D., Martin, M. G., & Siepmann, J. I. (2000). Transferable Potentials for Phase Equilibria. 4. United-Atom Description of Linear and Branched Alkenes and Alkylbenzenes. The Journal of Physical Chemistry B, 104(33), 8008-8016. doi:10.1021/jp001044x

Binder, T., Chmelik, C., Kärger, J., Martinez-Joaristi, A., Gascon, J., Kapteijn, F., & Ruthven, D. (2013). A diffusion study of small hydrocarbons in DDR zeolites by micro-imaging. Microporous and Mesoporous Materials, 180, 219-228. doi:10.1016/j.micromeso.2013.06.038

A. van Miltenburg, “Adsorptive separation of light olefin/paraffin mixtures: Dispersion of CuCl in faujasite zeolites,” thesis, Technische Universiteit Delft (2007).

Olson, D. H., Camblor, M. A., Villaescusa, L. A., & Kuehl, G. H. (2004). Light hydrocarbon sorption properties of pure silica Si-CHA and ITQ-3 and high silica ZSM-58. Microporous and Mesoporous Materials, 67(1), 27-33. doi:10.1016/j.micromeso.2003.09.025




This item appears in the following Collection(s)

Show full item record