- -

Decision making with Dempster-Shafer belief structure and the OWAWA operator

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Decision making with Dempster-Shafer belief structure and the OWAWA operator

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Merigó, José M. es_ES
dc.contributor.author Engemann, Kurt J. es_ES
dc.contributor.author Palacios Marqués, Daniel es_ES
dc.date.accessioned 2020-09-08T03:32:28Z
dc.date.available 2020-09-08T03:32:28Z
dc.date.issued 2013 es_ES
dc.identifier.issn 2029-4913 es_ES
dc.identifier.uri http://hdl.handle.net/10251/149554
dc.description.abstract [EN] A new decision making model that uses the weighted average and the ordered weighted averaging (OWA) operator in the Dempster-Shafer belief structure is presented. Thus, we are able to represent the decision making problem considering objective and subjective information and the attitudinal character of the decision maker. For doing so, we use the ordered weighted averaging ¿ weighted average (OWAWA) operator. It is an aggregation operator that unifies the weighted average and the OWA in the same formulation. This approach is generalized by using quasi-arithmetic means and group decision making techniques. An application of the new approach in a group decision making problem concerning political management of a country is also developed. es_ES
dc.description.sponsorship We would like to thank the anonymous reviewers for valuable comments that have improved the quality of the paper. Support from the Spanish Ministry of Education under project JC2009-00189 , the University of Barcelona (099311) and the European Commission (PIEFGA-2011-300062) is gratefully acknowledged es_ES
dc.language Inglés es_ES
dc.publisher Vilnius Gediminas Technical University es_ES
dc.relation.ispartof Technological and Economic Development of Economy es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Decision making es_ES
dc.subject OWA operator es_ES
dc.subject Weighted average es_ES
dc.subject Dempster-Shafer belief structure es_ES
dc.subject Aggregation operators es_ES
dc.subject Political management es_ES
dc.subject.classification ORGANIZACION DE EMPRESAS es_ES
dc.title Decision making with Dempster-Shafer belief structure and the OWAWA operator es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3846/20294913.2013.869517 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ME//JC2009-00189/ES/JC2009-00189/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/300062/EU/Intelligent Decision Making Systems in European Business and Economics/
dc.relation.projectID info:eu-repo/grantAgreement/UB//099311/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses es_ES
dc.description.bibliographicCitation Merigó, JM.; Engemann, KJ.; Palacios Marqués, D. (2013). Decision making with Dempster-Shafer belief structure and the OWAWA operator. Technological and Economic Development of Economy. 19(sup 1):S100-S118. https://doi.org/10.3846/20294913.2013.869517 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3846/20294913.2013.869517 es_ES
dc.description.upvformatpinicio S100 es_ES
dc.description.upvformatpfin S118 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.description.issue sup 1 es_ES
dc.relation.pasarela S\254921 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Ministerio de Educación es_ES
dc.contributor.funder Universitat de Barcelona es_ES
dc.description.references Antuchevičienė, J., Zavadskas, E. K., & Zakarevičius, A. (2010). MULTIPLE CRITERIA CONSTRUCTION MANAGEMENT DECISIONS CONSIDERING RELATIONS BETWEEN CRITERIA / DAUGIATIKSLIAI STATYBOS VALDYMO SPRENDIMAI ATSIŽVELGIANT Į RODIKLIŲ TARPUSAVIO PRIKLAUSOMYBĘ. Technological and Economic Development of Economy, 16(1), 109-125. doi:10.3846/tede.2010.07 es_ES
dc.description.references Brauers, W. K. M., & Zavadskas, E. K. (2010). PROJECT MANAGEMENT BY MULTIMOORA AS AN INSTRUMENT FOR TRANSITION ECONOMIES / PROJEKTŲ VADYBA SU MULTIMOORA KAIP PRIEMONĖ PEREINAMOJO LAIKOTARPIO ŪKIAMS. Technological and Economic Development of Economy, 16(1), 5-24. doi:10.3846/tede.2010.01 es_ES
dc.description.references Dempster, A. P. (1967). Upper and Lower Probabilities Induced by a Multivalued Mapping. The Annals of Mathematical Statistics, 38(2), 325-339. doi:10.1214/aoms/1177698950 es_ES
dc.description.references ENGEMANN, K. J., MILLER, H. E., & YAGER, R. R. (1996). DECISION MAKING WITH BELIEF STRUCTURES: AN APPLICATION IN RISK MANAGEMENT. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 04(01), 1-25. doi:10.1142/s0218488596000020 es_ES
dc.description.references ENGEMANN, K. J., FILEV, D. P., & YAGER, R. R. (1996). MODELLING DECISION MAKING USING IMMEDIATE PROBABILITIES. International Journal of General Systems, 24(3), 281-294. doi:10.1080/03081079608945123 es_ES
dc.description.references Engemann, K. J., & Miller, H. E. (2009). Critical infrastructure and smart technology risk modelling using computational intelligence. International Journal of Business Continuity and Risk Management, 1(1), 91. doi:10.1504/ijbcrm.2009.028953 es_ES
dc.description.references Fodor, J., Marichal, J.-L., & Roubens, M. (1995). Characterization of the ordered weighted averaging operators. IEEE Transactions on Fuzzy Systems, 3(2), 236-240. doi:10.1109/91.388176 es_ES
dc.description.references Han, Z., & Liu, P. (2011). A FUZZY MULTI-ATTRIBUTE DECISION-MAKING METHOD UNDER RISK WITH UNKNOWN ATTRIBUTE WEIGHTS / NERAIŠKUSIS MAŽESNĖS RIZIKOS DAUGIATIKSLIS SPRENDIMŲ PRIĖMIMO METODAS SU NEŽINOMAIS PRISKIRIAMAIS REIKŠMINGUMAIS. Technological and Economic Development of Economy, 17(2), 246-258. doi:10.3846/20294913.2011.580575 es_ES
dc.description.references Keršulienė, V., Zavadskas, E. K., & Turskis, Z. (2010). SELECTION OF RATIONAL DISPUTE RESOLUTION METHOD BY APPLYING NEW STEP‐WISE WEIGHT ASSESSMENT RATIO ANALYSIS (SWARA). Journal of Business Economics and Management, 11(2), 243-258. doi:10.3846/jbem.2010.12 es_ES
dc.description.references Liu, P. (2009). MULTI‐ATTRIBUTE DECISION‐MAKING METHOD RESEARCH BASED ON INTERVAL VAGUE SET AND TOPSIS METHOD. Technological and Economic Development of Economy, 15(3), 453-463. doi:10.3846/1392-8619.2009.15.453-463 es_ES
dc.description.references Liu, P. (2011). A weighted aggregation operators multi-attribute group decision-making method based on interval-valued trapezoidal fuzzy numbers. Expert Systems with Applications, 38(1), 1053-1060. doi:10.1016/j.eswa.2010.07.144 es_ES
dc.description.references Merigó, J. M. (2011). A unified model between the weighted average and the induced OWA operator. Expert Systems with Applications, 38(9), 11560-11572. doi:10.1016/j.eswa.2011.03.034 es_ES
dc.description.references Merigó, J. M. (2012). The probabilistic weighted average and its application in multiperson decision making. International Journal of Intelligent Systems, 27(5), 457-476. doi:10.1002/int.21531 es_ES
dc.description.references Merigó, J. M., & Casanovas, M. (2009). Induced aggregation operators in decision making with the Dempster-Shafer belief structure. International Journal of Intelligent Systems, 24(8), 934-954. doi:10.1002/int.20368 es_ES
dc.description.references Merigó, J. M., & Casanovas, M. (2010). The uncertain induced quasi-arithmetic OWA operator. International Journal of Intelligent Systems, 26(1), 1-24. doi:10.1002/int.20444 es_ES
dc.description.references MERIGÓ, J. M., & CASANOVAS, M. (2011). THE UNCERTAIN GENERALIZED OWA OPERATOR AND ITS APPLICATION TO FINANCIAL DECISION MAKING. International Journal of Information Technology & Decision Making, 10(02), 211-230. doi:10.1142/s0219622011004300 es_ES
dc.description.references MERIGÓ, J. M., CASANOVAS, M., & MARTÍNEZ, L. (2010). LINGUISTIC AGGREGATION OPERATORS FOR LINGUISTIC DECISION MAKING BASED ON THE DEMPSTER-SHAFER THEORY OF EVIDENCE. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 18(03), 287-304. doi:10.1142/s0218488510006544 es_ES
dc.description.references MERIGO, J., & GILLAFUENTE, A. (2009). The induced generalized OWA operator. Information Sciences, 179(6), 729-741. doi:10.1016/j.ins.2008.11.013 es_ES
dc.description.references Merigó, J. M., & Gil-Lafuente, A. M. (2010). New decision-making techniques and their application in the selection of financial products. Information Sciences, 180(11), 2085-2094. doi:10.1016/j.ins.2010.01.028 es_ES
dc.description.references Merigó, J. M., & Wei, G. (2011). PROBABILISTIC AGGREGATION OPERATORS AND THEIR APPLICATION IN UNCERTAIN MULTI-PERSON DECISION-MAKING / TIKIMYBINIAI SUMAVIMO OPERATORIAI IR JŲ TAIKYMAS PRIIMANT GRUPINIUS SPRENDIMUS NEAPIBRĖŽTOJE APLINKOJE. Technological and Economic Development of Economy, 17(2), 335-351. doi:10.3846/20294913.2011.584961 es_ES
dc.description.references Podvezko, V. (2009). Application of AHP technique. Journal of Business Economics and Management, 10(2), 181-189. doi:10.3846/1611-1699.2009.10.181-189 es_ES
dc.description.references Reformat, M., & Yager, R. R. (2007). Building ensemble classifiers using belief functions and OWA operators. Soft Computing, 12(6), 543-558. doi:10.1007/s00500-007-0227-2 es_ES
dc.description.references Srivastava, R. P., & Mock, T. J. (Eds.). (2002). Belief Functions in Business Decisions. Studies in Fuzziness and Soft Computing. doi:10.1007/978-3-7908-1798-0 es_ES
dc.description.references Torra, V. (1997). The weighted OWA operator. International Journal of Intelligent Systems, 12(2), 153-166. doi:10.1002/(sici)1098-111x(199702)12:2<153::aid-int3>3.0.co;2-p es_ES
dc.description.references Wei, G.-W. (2011). Some generalized aggregating operators with linguistic information and their application to multiple attribute group decision making. Computers & Industrial Engineering, 61(1), 32-38. doi:10.1016/j.cie.2011.02.007 es_ES
dc.description.references Wei, G., Zhao, X., & Lin, R. (2010). Some Induced Aggregating Operators with Fuzzy Number Intuitionistic Fuzzy Information and their Applications to Group Decision Making. International Journal of Computational Intelligence Systems, 3(1), 84-95. doi:10.1080/18756891.2010.9727679 es_ES
dc.description.references Xu, Z. (2005). An overview of methods for determining OWA weights. International Journal of Intelligent Systems, 20(8), 843-865. doi:10.1002/int.20097 es_ES
dc.description.references Xu, Z. (2009). A Deviation-Based Approach to Intuitionistic Fuzzy Multiple Attribute Group Decision Making. Group Decision and Negotiation, 19(1), 57-76. doi:10.1007/s10726-009-9164-z es_ES
dc.description.references Xu, Z. S., & Da, Q. L. (2003). An overview of operators for aggregating information. International Journal of Intelligent Systems, 18(9), 953-969. doi:10.1002/int.10127 es_ES
dc.description.references Yager, R. R. (1988). On ordered weighted averaging aggregation operators in multicriteria decisionmaking. IEEE Transactions on Systems, Man, and Cybernetics, 18(1), 183-190. doi:10.1109/21.87068 es_ES
dc.description.references YAGER, R. R. (1992). DECISION MAKING UNDER DEMPSTER-SHAFER UNCERTAINTIES. International Journal of General Systems, 20(3), 233-245. doi:10.1080/03081079208945033 es_ES
dc.description.references Yager, R. R. (1993). Families of OWA operators. Fuzzy Sets and Systems, 59(2), 125-148. doi:10.1016/0165-0114(93)90194-m es_ES
dc.description.references Yager, R. R. (1998). Including importances in OWA aggregations using fuzzy systems modeling. IEEE Transactions on Fuzzy Systems, 6(2), 286-294. doi:10.1109/91.669028 es_ES
dc.description.references Yager, R. R. (2004). Generalized OWA Aggregation Operators. Fuzzy Optimization and Decision Making, 3(1), 93-107. doi:10.1023/b:fodm.0000013074.68765.97 es_ES
dc.description.references Yager, R. R., Engemann, K. J., & Filev, D. P. (1995). On the concept of immediate probabilities. International Journal of Intelligent Systems, 10(4), 373-397. doi:10.1002/int.4550100403 es_ES
dc.description.references Yager, R. R., & Kacprzyk, J. (Eds.). (1997). The Ordered Weighted Averaging Operators. doi:10.1007/978-1-4615-6123-1 es_ES
dc.description.references Yager, R. R., Kacprzyk, J., & Beliakov, G. (Eds.). (2011). Recent Developments in the Ordered Weighted Averaging Operators: Theory and Practice. Studies in Fuzziness and Soft Computing. doi:10.1007/978-3-642-17910-5 es_ES
dc.description.references Yager, R. R., & Liu, L. (Eds.). (2008). Classic Works of the Dempster-Shafer Theory of Belief Functions. Studies in Fuzziness and Soft Computing. doi:10.1007/978-3-540-44792-4 es_ES
dc.description.references Zavadskas, E. K., & Turskis, Z. (2011). MULTIPLE CRITERIA DECISION MAKING (MCDM) METHODS IN ECONOMICS: AN OVERVIEW / DAUGIATIKSLIAI SPRENDIMŲ PRIĖMIMO METODAI EKONOMIKOJE: APŽVALGA. Technological and Economic Development of Economy, 17(2), 397-427. doi:10.3846/20294913.2011.593291 es_ES
dc.description.references Zavadskas, E. K., Vilutienė, T., Turskis, Z., & Tamosaitienė, J. (2010). CONTRACTOR SELECTION FOR CONSTRUCTION WORKS BY APPLYING SAW‐G AND TOPSIS GREY TECHNIQUES. Journal of Business Economics and Management, 11(1), 34-55. doi:10.3846/jbem.2010.03 es_ES
dc.description.references Zeng, S., & Su, W. (2011). Intuitionistic fuzzy ordered weighted distance operator. Knowledge-Based Systems, 24(8), 1224-1232. doi:10.1016/j.knosys.2011.05.013 es_ES
dc.description.references Zhang, X., & Liu, P. (2010). METHOD FOR AGGREGATING TRIANGULAR FUZZY INTUITIONISTIC FUZZY INFORMATION AND ITS APPLICATION TO DECISION MAKING / NUMANOMŲ NEAPIBRĖŽTŲJŲ AIBIŲ TEORIJA IR JOS TAIKYMAS PRIIMANT SPRENDIMUS. Technological and Economic Development of Economy, 16(2), 280-290. doi:10.3846/tede.2010.18 es_ES
dc.description.references Zhao, H., Xu, Z., Ni, M., & Liu, S. (2010). Generalized aggregation operators for intuitionistic fuzzy sets. International Journal of Intelligent Systems, 25(1), 1-30. doi:10.1002/int.20386 es_ES
dc.description.references Zhou, L.-G., & Chen, H. (2010). Generalized ordered weighted logarithm aggregation operators and their applications to group decision making. International Journal of Intelligent Systems, n/a-n/a. doi:10.1002/int.20419 es_ES
dc.description.references Zhou, L.-G., & Chen, H.-Y. (2011). Continuous generalized OWA operator and its application to decision making. Fuzzy Sets and Systems, 168(1), 18-34. doi:10.1016/j.fss.2010.05.009 es_ES
dc.description.references Zhou, L., & Chen, H. (2012). A generalization of the power aggregation operators for linguistic environment and its application in group decision making. Knowledge-Based Systems, 26, 216-224. doi:10.1016/j.knosys.2011.08.004 es_ES
dc.description.references Zhou, L., Chen, H., & Liu, J. (2011). Generalized Multiple Averaging Operators and their Applications to Group Decision Making. Group Decision and Negotiation, 22(2), 331-358. doi:10.1007/s10726-011-9267-1 es_ES
dc.description.references Zhou, L., Chen, H., & Liu, J. (2012). Generalized power aggregation operators and their applications in group decision making. Computers & Industrial Engineering, 62(4), 989-999. doi:10.1016/j.cie.2011.12.025 es_ES
dc.description.references Zhou, L.-G., Chen, H.-Y., Merigó, J. M., & Gil-Lafuente, A. M. (2012). Uncertain generalized aggregation operators. Expert Systems with Applications, 39(1), 1105-1117. doi:10.1016/j.eswa.2011.07.110 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem