Mostrar el registro sencillo del ítem
dc.contributor.author | Merigó, José M. | es_ES |
dc.contributor.author | Engemann, Kurt J. | es_ES |
dc.contributor.author | Palacios Marqués, Daniel | es_ES |
dc.date.accessioned | 2020-09-08T03:32:28Z | |
dc.date.available | 2020-09-08T03:32:28Z | |
dc.date.issued | 2013 | es_ES |
dc.identifier.issn | 2029-4913 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/149554 | |
dc.description.abstract | [EN] A new decision making model that uses the weighted average and the ordered weighted averaging (OWA) operator in the Dempster-Shafer belief structure is presented. Thus, we are able to represent the decision making problem considering objective and subjective information and the attitudinal character of the decision maker. For doing so, we use the ordered weighted averaging ¿ weighted average (OWAWA) operator. It is an aggregation operator that unifies the weighted average and the OWA in the same formulation. This approach is generalized by using quasi-arithmetic means and group decision making techniques. An application of the new approach in a group decision making problem concerning political management of a country is also developed. | es_ES |
dc.description.sponsorship | We would like to thank the anonymous reviewers for valuable comments that have improved the quality of the paper. Support from the Spanish Ministry of Education under project JC2009-00189 , the University of Barcelona (099311) and the European Commission (PIEFGA-2011-300062) is gratefully acknowledged | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Vilnius Gediminas Technical University | es_ES |
dc.relation.ispartof | Technological and Economic Development of Economy | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Decision making | es_ES |
dc.subject | OWA operator | es_ES |
dc.subject | Weighted average | es_ES |
dc.subject | Dempster-Shafer belief structure | es_ES |
dc.subject | Aggregation operators | es_ES |
dc.subject | Political management | es_ES |
dc.subject.classification | ORGANIZACION DE EMPRESAS | es_ES |
dc.title | Decision making with Dempster-Shafer belief structure and the OWAWA operator | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3846/20294913.2013.869517 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/ME//JC2009-00189/ES/JC2009-00189/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/300062/EU/Intelligent Decision Making Systems in European Business and Economics/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/UB//099311/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses | es_ES |
dc.description.bibliographicCitation | Merigó, JM.; Engemann, KJ.; Palacios Marqués, D. (2013). Decision making with Dempster-Shafer belief structure and the OWAWA operator. Technological and Economic Development of Economy. 19(sup 1):S100-S118. https://doi.org/10.3846/20294913.2013.869517 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3846/20294913.2013.869517 | es_ES |
dc.description.upvformatpinicio | S100 | es_ES |
dc.description.upvformatpfin | S118 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 19 | es_ES |
dc.description.issue | sup 1 | es_ES |
dc.relation.pasarela | S\254921 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Ministerio de Educación | es_ES |
dc.contributor.funder | Universitat de Barcelona | es_ES |
dc.description.references | Antuchevičienė, J., Zavadskas, E. K., & Zakarevičius, A. (2010). MULTIPLE CRITERIA CONSTRUCTION MANAGEMENT DECISIONS CONSIDERING RELATIONS BETWEEN CRITERIA / DAUGIATIKSLIAI STATYBOS VALDYMO SPRENDIMAI ATSIŽVELGIANT Į RODIKLIŲ TARPUSAVIO PRIKLAUSOMYBĘ. Technological and Economic Development of Economy, 16(1), 109-125. doi:10.3846/tede.2010.07 | es_ES |
dc.description.references | Brauers, W. K. M., & Zavadskas, E. K. (2010). PROJECT MANAGEMENT BY MULTIMOORA AS AN INSTRUMENT FOR TRANSITION ECONOMIES / PROJEKTŲ VADYBA SU MULTIMOORA KAIP PRIEMONĖ PEREINAMOJO LAIKOTARPIO ŪKIAMS. Technological and Economic Development of Economy, 16(1), 5-24. doi:10.3846/tede.2010.01 | es_ES |
dc.description.references | Dempster, A. P. (1967). Upper and Lower Probabilities Induced by a Multivalued Mapping. The Annals of Mathematical Statistics, 38(2), 325-339. doi:10.1214/aoms/1177698950 | es_ES |
dc.description.references | ENGEMANN, K. J., MILLER, H. E., & YAGER, R. R. (1996). DECISION MAKING WITH BELIEF STRUCTURES: AN APPLICATION IN RISK MANAGEMENT. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 04(01), 1-25. doi:10.1142/s0218488596000020 | es_ES |
dc.description.references | ENGEMANN, K. J., FILEV, D. P., & YAGER, R. R. (1996). MODELLING DECISION MAKING USING IMMEDIATE PROBABILITIES. International Journal of General Systems, 24(3), 281-294. doi:10.1080/03081079608945123 | es_ES |
dc.description.references | Engemann, K. J., & Miller, H. E. (2009). Critical infrastructure and smart technology risk modelling using computational intelligence. International Journal of Business Continuity and Risk Management, 1(1), 91. doi:10.1504/ijbcrm.2009.028953 | es_ES |
dc.description.references | Fodor, J., Marichal, J.-L., & Roubens, M. (1995). Characterization of the ordered weighted averaging operators. IEEE Transactions on Fuzzy Systems, 3(2), 236-240. doi:10.1109/91.388176 | es_ES |
dc.description.references | Han, Z., & Liu, P. (2011). A FUZZY MULTI-ATTRIBUTE DECISION-MAKING METHOD UNDER RISK WITH UNKNOWN ATTRIBUTE WEIGHTS / NERAIŠKUSIS MAŽESNĖS RIZIKOS DAUGIATIKSLIS SPRENDIMŲ PRIĖMIMO METODAS SU NEŽINOMAIS PRISKIRIAMAIS REIKŠMINGUMAIS. Technological and Economic Development of Economy, 17(2), 246-258. doi:10.3846/20294913.2011.580575 | es_ES |
dc.description.references | Keršulienė, V., Zavadskas, E. K., & Turskis, Z. (2010). SELECTION OF RATIONAL DISPUTE RESOLUTION METHOD BY APPLYING NEW STEP‐WISE WEIGHT ASSESSMENT RATIO ANALYSIS (SWARA). Journal of Business Economics and Management, 11(2), 243-258. doi:10.3846/jbem.2010.12 | es_ES |
dc.description.references | Liu, P. (2009). MULTI‐ATTRIBUTE DECISION‐MAKING METHOD RESEARCH BASED ON INTERVAL VAGUE SET AND TOPSIS METHOD. Technological and Economic Development of Economy, 15(3), 453-463. doi:10.3846/1392-8619.2009.15.453-463 | es_ES |
dc.description.references | Liu, P. (2011). A weighted aggregation operators multi-attribute group decision-making method based on interval-valued trapezoidal fuzzy numbers. Expert Systems with Applications, 38(1), 1053-1060. doi:10.1016/j.eswa.2010.07.144 | es_ES |
dc.description.references | Merigó, J. M. (2011). A unified model between the weighted average and the induced OWA operator. Expert Systems with Applications, 38(9), 11560-11572. doi:10.1016/j.eswa.2011.03.034 | es_ES |
dc.description.references | Merigó, J. M. (2012). The probabilistic weighted average and its application in multiperson decision making. International Journal of Intelligent Systems, 27(5), 457-476. doi:10.1002/int.21531 | es_ES |
dc.description.references | Merigó, J. M., & Casanovas, M. (2009). Induced aggregation operators in decision making with the Dempster-Shafer belief structure. International Journal of Intelligent Systems, 24(8), 934-954. doi:10.1002/int.20368 | es_ES |
dc.description.references | Merigó, J. M., & Casanovas, M. (2010). The uncertain induced quasi-arithmetic OWA operator. International Journal of Intelligent Systems, 26(1), 1-24. doi:10.1002/int.20444 | es_ES |
dc.description.references | MERIGÓ, J. M., & CASANOVAS, M. (2011). THE UNCERTAIN GENERALIZED OWA OPERATOR AND ITS APPLICATION TO FINANCIAL DECISION MAKING. International Journal of Information Technology & Decision Making, 10(02), 211-230. doi:10.1142/s0219622011004300 | es_ES |
dc.description.references | MERIGÓ, J. M., CASANOVAS, M., & MARTÍNEZ, L. (2010). LINGUISTIC AGGREGATION OPERATORS FOR LINGUISTIC DECISION MAKING BASED ON THE DEMPSTER-SHAFER THEORY OF EVIDENCE. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 18(03), 287-304. doi:10.1142/s0218488510006544 | es_ES |
dc.description.references | MERIGO, J., & GILLAFUENTE, A. (2009). The induced generalized OWA operator. Information Sciences, 179(6), 729-741. doi:10.1016/j.ins.2008.11.013 | es_ES |
dc.description.references | Merigó, J. M., & Gil-Lafuente, A. M. (2010). New decision-making techniques and their application in the selection of financial products. Information Sciences, 180(11), 2085-2094. doi:10.1016/j.ins.2010.01.028 | es_ES |
dc.description.references | Merigó, J. M., & Wei, G. (2011). PROBABILISTIC AGGREGATION OPERATORS AND THEIR APPLICATION IN UNCERTAIN MULTI-PERSON DECISION-MAKING / TIKIMYBINIAI SUMAVIMO OPERATORIAI IR JŲ TAIKYMAS PRIIMANT GRUPINIUS SPRENDIMUS NEAPIBRĖŽTOJE APLINKOJE. Technological and Economic Development of Economy, 17(2), 335-351. doi:10.3846/20294913.2011.584961 | es_ES |
dc.description.references | Podvezko, V. (2009). Application of AHP technique. Journal of Business Economics and Management, 10(2), 181-189. doi:10.3846/1611-1699.2009.10.181-189 | es_ES |
dc.description.references | Reformat, M., & Yager, R. R. (2007). Building ensemble classifiers using belief functions and OWA operators. Soft Computing, 12(6), 543-558. doi:10.1007/s00500-007-0227-2 | es_ES |
dc.description.references | Srivastava, R. P., & Mock, T. J. (Eds.). (2002). Belief Functions in Business Decisions. Studies in Fuzziness and Soft Computing. doi:10.1007/978-3-7908-1798-0 | es_ES |
dc.description.references | Torra, V. (1997). The weighted OWA operator. International Journal of Intelligent Systems, 12(2), 153-166. doi:10.1002/(sici)1098-111x(199702)12:2<153::aid-int3>3.0.co;2-p | es_ES |
dc.description.references | Wei, G.-W. (2011). Some generalized aggregating operators with linguistic information and their application to multiple attribute group decision making. Computers & Industrial Engineering, 61(1), 32-38. doi:10.1016/j.cie.2011.02.007 | es_ES |
dc.description.references | Wei, G., Zhao, X., & Lin, R. (2010). Some Induced Aggregating Operators with Fuzzy Number Intuitionistic Fuzzy Information and their Applications to Group Decision Making. International Journal of Computational Intelligence Systems, 3(1), 84-95. doi:10.1080/18756891.2010.9727679 | es_ES |
dc.description.references | Xu, Z. (2005). An overview of methods for determining OWA weights. International Journal of Intelligent Systems, 20(8), 843-865. doi:10.1002/int.20097 | es_ES |
dc.description.references | Xu, Z. (2009). A Deviation-Based Approach to Intuitionistic Fuzzy Multiple Attribute Group Decision Making. Group Decision and Negotiation, 19(1), 57-76. doi:10.1007/s10726-009-9164-z | es_ES |
dc.description.references | Xu, Z. S., & Da, Q. L. (2003). An overview of operators for aggregating information. International Journal of Intelligent Systems, 18(9), 953-969. doi:10.1002/int.10127 | es_ES |
dc.description.references | Yager, R. R. (1988). On ordered weighted averaging aggregation operators in multicriteria decisionmaking. IEEE Transactions on Systems, Man, and Cybernetics, 18(1), 183-190. doi:10.1109/21.87068 | es_ES |
dc.description.references | YAGER, R. R. (1992). DECISION MAKING UNDER DEMPSTER-SHAFER UNCERTAINTIES. International Journal of General Systems, 20(3), 233-245. doi:10.1080/03081079208945033 | es_ES |
dc.description.references | Yager, R. R. (1993). Families of OWA operators. Fuzzy Sets and Systems, 59(2), 125-148. doi:10.1016/0165-0114(93)90194-m | es_ES |
dc.description.references | Yager, R. R. (1998). Including importances in OWA aggregations using fuzzy systems modeling. IEEE Transactions on Fuzzy Systems, 6(2), 286-294. doi:10.1109/91.669028 | es_ES |
dc.description.references | Yager, R. R. (2004). Generalized OWA Aggregation Operators. Fuzzy Optimization and Decision Making, 3(1), 93-107. doi:10.1023/b:fodm.0000013074.68765.97 | es_ES |
dc.description.references | Yager, R. R., Engemann, K. J., & Filev, D. P. (1995). On the concept of immediate probabilities. International Journal of Intelligent Systems, 10(4), 373-397. doi:10.1002/int.4550100403 | es_ES |
dc.description.references | Yager, R. R., & Kacprzyk, J. (Eds.). (1997). The Ordered Weighted Averaging Operators. doi:10.1007/978-1-4615-6123-1 | es_ES |
dc.description.references | Yager, R. R., Kacprzyk, J., & Beliakov, G. (Eds.). (2011). Recent Developments in the Ordered Weighted Averaging Operators: Theory and Practice. Studies in Fuzziness and Soft Computing. doi:10.1007/978-3-642-17910-5 | es_ES |
dc.description.references | Yager, R. R., & Liu, L. (Eds.). (2008). Classic Works of the Dempster-Shafer Theory of Belief Functions. Studies in Fuzziness and Soft Computing. doi:10.1007/978-3-540-44792-4 | es_ES |
dc.description.references | Zavadskas, E. K., & Turskis, Z. (2011). MULTIPLE CRITERIA DECISION MAKING (MCDM) METHODS IN ECONOMICS: AN OVERVIEW / DAUGIATIKSLIAI SPRENDIMŲ PRIĖMIMO METODAI EKONOMIKOJE: APŽVALGA. Technological and Economic Development of Economy, 17(2), 397-427. doi:10.3846/20294913.2011.593291 | es_ES |
dc.description.references | Zavadskas, E. K., Vilutienė, T., Turskis, Z., & Tamosaitienė, J. (2010). CONTRACTOR SELECTION FOR CONSTRUCTION WORKS BY APPLYING SAW‐G AND TOPSIS GREY TECHNIQUES. Journal of Business Economics and Management, 11(1), 34-55. doi:10.3846/jbem.2010.03 | es_ES |
dc.description.references | Zeng, S., & Su, W. (2011). Intuitionistic fuzzy ordered weighted distance operator. Knowledge-Based Systems, 24(8), 1224-1232. doi:10.1016/j.knosys.2011.05.013 | es_ES |
dc.description.references | Zhang, X., & Liu, P. (2010). METHOD FOR AGGREGATING TRIANGULAR FUZZY INTUITIONISTIC FUZZY INFORMATION AND ITS APPLICATION TO DECISION MAKING / NUMANOMŲ NEAPIBRĖŽTŲJŲ AIBIŲ TEORIJA IR JOS TAIKYMAS PRIIMANT SPRENDIMUS. Technological and Economic Development of Economy, 16(2), 280-290. doi:10.3846/tede.2010.18 | es_ES |
dc.description.references | Zhao, H., Xu, Z., Ni, M., & Liu, S. (2010). Generalized aggregation operators for intuitionistic fuzzy sets. International Journal of Intelligent Systems, 25(1), 1-30. doi:10.1002/int.20386 | es_ES |
dc.description.references | Zhou, L.-G., & Chen, H. (2010). Generalized ordered weighted logarithm aggregation operators and their applications to group decision making. International Journal of Intelligent Systems, n/a-n/a. doi:10.1002/int.20419 | es_ES |
dc.description.references | Zhou, L.-G., & Chen, H.-Y. (2011). Continuous generalized OWA operator and its application to decision making. Fuzzy Sets and Systems, 168(1), 18-34. doi:10.1016/j.fss.2010.05.009 | es_ES |
dc.description.references | Zhou, L., & Chen, H. (2012). A generalization of the power aggregation operators for linguistic environment and its application in group decision making. Knowledge-Based Systems, 26, 216-224. doi:10.1016/j.knosys.2011.08.004 | es_ES |
dc.description.references | Zhou, L., Chen, H., & Liu, J. (2011). Generalized Multiple Averaging Operators and their Applications to Group Decision Making. Group Decision and Negotiation, 22(2), 331-358. doi:10.1007/s10726-011-9267-1 | es_ES |
dc.description.references | Zhou, L., Chen, H., & Liu, J. (2012). Generalized power aggregation operators and their applications in group decision making. Computers & Industrial Engineering, 62(4), 989-999. doi:10.1016/j.cie.2011.12.025 | es_ES |
dc.description.references | Zhou, L.-G., Chen, H.-Y., Merigó, J. M., & Gil-Lafuente, A. M. (2012). Uncertain generalized aggregation operators. Expert Systems with Applications, 39(1), 1105-1117. doi:10.1016/j.eswa.2011.07.110 | es_ES |