- -

Decision making with Dempster-Shafer belief structure and the OWAWA operator

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Decision making with Dempster-Shafer belief structure and the OWAWA operator

Mostrar el registro completo del ítem

Merigó, JM.; Engemann, KJ.; Palacios Marqués, D. (2013). Decision making with Dempster-Shafer belief structure and the OWAWA operator. Technological and Economic Development of Economy. 19(sup 1):S100-S118. https://doi.org/10.3846/20294913.2013.869517

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/149554

Ficheros en el ítem

Metadatos del ítem

Título: Decision making with Dempster-Shafer belief structure and the OWAWA operator
Autor: Merigó, José M. Engemann, Kurt J. Palacios Marqués, Daniel
Entidad UPV: Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses
Fecha difusión:
Resumen:
[EN] A new decision making model that uses the weighted average and the ordered weighted averaging (OWA) operator in the Dempster-Shafer belief structure is presented. Thus, we are able to represent the decision making ...[+]
Palabras clave: Decision making , OWA operator , Weighted average , Dempster-Shafer belief structure , Aggregation operators , Political management
Derechos de uso: Reconocimiento (by)
Fuente:
Technological and Economic Development of Economy. (issn: 2029-4913 )
DOI: 10.3846/20294913.2013.869517
Editorial:
Vilnius Gediminas Technical University
Versión del editor: https://doi.org/10.3846/20294913.2013.869517
Código del Proyecto:
info:eu-repo/grantAgreement/ME//JC2009-00189/ES/JC2009-00189/
info:eu-repo/grantAgreement/EC/FP7/300062/EU/Intelligent Decision Making Systems in European Business and Economics/
info:eu-repo/grantAgreement/UB//099311/
Agradecimientos:
We would like to thank the anonymous reviewers for valuable comments that have improved the quality of the paper. Support from the Spanish Ministry of Education under project JC2009-00189 , the University of Barcelona ...[+]
Tipo: Artículo

References

Antuchevičienė, J., Zavadskas, E. K., & Zakarevičius, A. (2010). MULTIPLE CRITERIA CONSTRUCTION MANAGEMENT DECISIONS CONSIDERING RELATIONS BETWEEN CRITERIA / DAUGIATIKSLIAI STATYBOS VALDYMO SPRENDIMAI ATSIŽVELGIANT Į RODIKLIŲ TARPUSAVIO PRIKLAUSOMYBĘ. Technological and Economic Development of Economy, 16(1), 109-125. doi:10.3846/tede.2010.07

Brauers, W. K. M., & Zavadskas, E. K. (2010). PROJECT MANAGEMENT BY MULTIMOORA AS AN INSTRUMENT FOR TRANSITION ECONOMIES / PROJEKTŲ VADYBA SU MULTIMOORA KAIP PRIEMONĖ PEREINAMOJO LAIKOTARPIO ŪKIAMS. Technological and Economic Development of Economy, 16(1), 5-24. doi:10.3846/tede.2010.01

Dempster, A. P. (1967). Upper and Lower Probabilities Induced by a Multivalued Mapping. The Annals of Mathematical Statistics, 38(2), 325-339. doi:10.1214/aoms/1177698950 [+]
Antuchevičienė, J., Zavadskas, E. K., & Zakarevičius, A. (2010). MULTIPLE CRITERIA CONSTRUCTION MANAGEMENT DECISIONS CONSIDERING RELATIONS BETWEEN CRITERIA / DAUGIATIKSLIAI STATYBOS VALDYMO SPRENDIMAI ATSIŽVELGIANT Į RODIKLIŲ TARPUSAVIO PRIKLAUSOMYBĘ. Technological and Economic Development of Economy, 16(1), 109-125. doi:10.3846/tede.2010.07

Brauers, W. K. M., & Zavadskas, E. K. (2010). PROJECT MANAGEMENT BY MULTIMOORA AS AN INSTRUMENT FOR TRANSITION ECONOMIES / PROJEKTŲ VADYBA SU MULTIMOORA KAIP PRIEMONĖ PEREINAMOJO LAIKOTARPIO ŪKIAMS. Technological and Economic Development of Economy, 16(1), 5-24. doi:10.3846/tede.2010.01

Dempster, A. P. (1967). Upper and Lower Probabilities Induced by a Multivalued Mapping. The Annals of Mathematical Statistics, 38(2), 325-339. doi:10.1214/aoms/1177698950

ENGEMANN, K. J., MILLER, H. E., & YAGER, R. R. (1996). DECISION MAKING WITH BELIEF STRUCTURES: AN APPLICATION IN RISK MANAGEMENT. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 04(01), 1-25. doi:10.1142/s0218488596000020

ENGEMANN, K. J., FILEV, D. P., & YAGER, R. R. (1996). MODELLING DECISION MAKING USING IMMEDIATE PROBABILITIES. International Journal of General Systems, 24(3), 281-294. doi:10.1080/03081079608945123

Engemann, K. J., & Miller, H. E. (2009). Critical infrastructure and smart technology risk modelling using computational intelligence. International Journal of Business Continuity and Risk Management, 1(1), 91. doi:10.1504/ijbcrm.2009.028953

Fodor, J., Marichal, J.-L., & Roubens, M. (1995). Characterization of the ordered weighted averaging operators. IEEE Transactions on Fuzzy Systems, 3(2), 236-240. doi:10.1109/91.388176

Han, Z., & Liu, P. (2011). A FUZZY MULTI-ATTRIBUTE DECISION-MAKING METHOD UNDER RISK WITH UNKNOWN ATTRIBUTE WEIGHTS / NERAIŠKUSIS MAŽESNĖS RIZIKOS DAUGIATIKSLIS SPRENDIMŲ PRIĖMIMO METODAS SU NEŽINOMAIS PRISKIRIAMAIS REIKŠMINGUMAIS. Technological and Economic Development of Economy, 17(2), 246-258. doi:10.3846/20294913.2011.580575

Keršulienė, V., Zavadskas, E. K., & Turskis, Z. (2010). SELECTION OF RATIONAL DISPUTE RESOLUTION METHOD BY APPLYING NEW STEP‐WISE WEIGHT ASSESSMENT RATIO ANALYSIS (SWARA). Journal of Business Economics and Management, 11(2), 243-258. doi:10.3846/jbem.2010.12

Liu, P. (2009). MULTI‐ATTRIBUTE DECISION‐MAKING METHOD RESEARCH BASED ON INTERVAL VAGUE SET AND TOPSIS METHOD. Technological and Economic Development of Economy, 15(3), 453-463. doi:10.3846/1392-8619.2009.15.453-463

Liu, P. (2011). A weighted aggregation operators multi-attribute group decision-making method based on interval-valued trapezoidal fuzzy numbers. Expert Systems with Applications, 38(1), 1053-1060. doi:10.1016/j.eswa.2010.07.144

Merigó, J. M. (2011). A unified model between the weighted average and the induced OWA operator. Expert Systems with Applications, 38(9), 11560-11572. doi:10.1016/j.eswa.2011.03.034

Merigó, J. M. (2012). The probabilistic weighted average and its application in multiperson decision making. International Journal of Intelligent Systems, 27(5), 457-476. doi:10.1002/int.21531

Merigó, J. M., & Casanovas, M. (2009). Induced aggregation operators in decision making with the Dempster-Shafer belief structure. International Journal of Intelligent Systems, 24(8), 934-954. doi:10.1002/int.20368

Merigó, J. M., & Casanovas, M. (2010). The uncertain induced quasi-arithmetic OWA operator. International Journal of Intelligent Systems, 26(1), 1-24. doi:10.1002/int.20444

MERIGÓ, J. M., & CASANOVAS, M. (2011). THE UNCERTAIN GENERALIZED OWA OPERATOR AND ITS APPLICATION TO FINANCIAL DECISION MAKING. International Journal of Information Technology & Decision Making, 10(02), 211-230. doi:10.1142/s0219622011004300

MERIGÓ, J. M., CASANOVAS, M., & MARTÍNEZ, L. (2010). LINGUISTIC AGGREGATION OPERATORS FOR LINGUISTIC DECISION MAKING BASED ON THE DEMPSTER-SHAFER THEORY OF EVIDENCE. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 18(03), 287-304. doi:10.1142/s0218488510006544

MERIGO, J., & GILLAFUENTE, A. (2009). The induced generalized OWA operator. Information Sciences, 179(6), 729-741. doi:10.1016/j.ins.2008.11.013

Merigó, J. M., & Gil-Lafuente, A. M. (2010). New decision-making techniques and their application in the selection of financial products. Information Sciences, 180(11), 2085-2094. doi:10.1016/j.ins.2010.01.028

Merigó, J. M., & Wei, G. (2011). PROBABILISTIC AGGREGATION OPERATORS AND THEIR APPLICATION IN UNCERTAIN MULTI-PERSON DECISION-MAKING / TIKIMYBINIAI SUMAVIMO OPERATORIAI IR JŲ TAIKYMAS PRIIMANT GRUPINIUS SPRENDIMUS NEAPIBRĖŽTOJE APLINKOJE. Technological and Economic Development of Economy, 17(2), 335-351. doi:10.3846/20294913.2011.584961

Podvezko, V. (2009). Application of AHP technique. Journal of Business Economics and Management, 10(2), 181-189. doi:10.3846/1611-1699.2009.10.181-189

Reformat, M., & Yager, R. R. (2007). Building ensemble classifiers using belief functions and OWA operators. Soft Computing, 12(6), 543-558. doi:10.1007/s00500-007-0227-2

Srivastava, R. P., & Mock, T. J. (Eds.). (2002). Belief Functions in Business Decisions. Studies in Fuzziness and Soft Computing. doi:10.1007/978-3-7908-1798-0

Torra, V. (1997). The weighted OWA operator. International Journal of Intelligent Systems, 12(2), 153-166. doi:10.1002/(sici)1098-111x(199702)12:2<153::aid-int3>3.0.co;2-p

Wei, G.-W. (2011). Some generalized aggregating operators with linguistic information and their application to multiple attribute group decision making. Computers & Industrial Engineering, 61(1), 32-38. doi:10.1016/j.cie.2011.02.007

Wei, G., Zhao, X., & Lin, R. (2010). Some Induced Aggregating Operators with Fuzzy Number Intuitionistic Fuzzy Information and their Applications to Group Decision Making. International Journal of Computational Intelligence Systems, 3(1), 84-95. doi:10.1080/18756891.2010.9727679

Xu, Z. (2005). An overview of methods for determining OWA weights. International Journal of Intelligent Systems, 20(8), 843-865. doi:10.1002/int.20097

Xu, Z. (2009). A Deviation-Based Approach to Intuitionistic Fuzzy Multiple Attribute Group Decision Making. Group Decision and Negotiation, 19(1), 57-76. doi:10.1007/s10726-009-9164-z

Xu, Z. S., & Da, Q. L. (2003). An overview of operators for aggregating information. International Journal of Intelligent Systems, 18(9), 953-969. doi:10.1002/int.10127

Yager, R. R. (1988). On ordered weighted averaging aggregation operators in multicriteria decisionmaking. IEEE Transactions on Systems, Man, and Cybernetics, 18(1), 183-190. doi:10.1109/21.87068

YAGER, R. R. (1992). DECISION MAKING UNDER DEMPSTER-SHAFER UNCERTAINTIES. International Journal of General Systems, 20(3), 233-245. doi:10.1080/03081079208945033

Yager, R. R. (1993). Families of OWA operators. Fuzzy Sets and Systems, 59(2), 125-148. doi:10.1016/0165-0114(93)90194-m

Yager, R. R. (1998). Including importances in OWA aggregations using fuzzy systems modeling. IEEE Transactions on Fuzzy Systems, 6(2), 286-294. doi:10.1109/91.669028

Yager, R. R. (2004). Generalized OWA Aggregation Operators. Fuzzy Optimization and Decision Making, 3(1), 93-107. doi:10.1023/b:fodm.0000013074.68765.97

Yager, R. R., Engemann, K. J., & Filev, D. P. (1995). On the concept of immediate probabilities. International Journal of Intelligent Systems, 10(4), 373-397. doi:10.1002/int.4550100403

Yager, R. R., & Kacprzyk, J. (Eds.). (1997). The Ordered Weighted Averaging Operators. doi:10.1007/978-1-4615-6123-1

Yager, R. R., Kacprzyk, J., & Beliakov, G. (Eds.). (2011). Recent Developments in the Ordered Weighted Averaging Operators: Theory and Practice. Studies in Fuzziness and Soft Computing. doi:10.1007/978-3-642-17910-5

Yager, R. R., & Liu, L. (Eds.). (2008). Classic Works of the Dempster-Shafer Theory of Belief Functions. Studies in Fuzziness and Soft Computing. doi:10.1007/978-3-540-44792-4

Zavadskas, E. K., & Turskis, Z. (2011). MULTIPLE CRITERIA DECISION MAKING (MCDM) METHODS IN ECONOMICS: AN OVERVIEW / DAUGIATIKSLIAI SPRENDIMŲ PRIĖMIMO METODAI EKONOMIKOJE: APŽVALGA. Technological and Economic Development of Economy, 17(2), 397-427. doi:10.3846/20294913.2011.593291

Zavadskas, E. K., Vilutienė, T., Turskis, Z., & Tamosaitienė, J. (2010). CONTRACTOR SELECTION FOR CONSTRUCTION WORKS BY APPLYING SAW‐G AND TOPSIS GREY TECHNIQUES. Journal of Business Economics and Management, 11(1), 34-55. doi:10.3846/jbem.2010.03

Zeng, S., & Su, W. (2011). Intuitionistic fuzzy ordered weighted distance operator. Knowledge-Based Systems, 24(8), 1224-1232. doi:10.1016/j.knosys.2011.05.013

Zhang, X., & Liu, P. (2010). METHOD FOR AGGREGATING TRIANGULAR FUZZY INTUITIONISTIC FUZZY INFORMATION AND ITS APPLICATION TO DECISION MAKING / NUMANOMŲ NEAPIBRĖŽTŲJŲ AIBIŲ TEORIJA IR JOS TAIKYMAS PRIIMANT SPRENDIMUS. Technological and Economic Development of Economy, 16(2), 280-290. doi:10.3846/tede.2010.18

Zhao, H., Xu, Z., Ni, M., & Liu, S. (2010). Generalized aggregation operators for intuitionistic fuzzy sets. International Journal of Intelligent Systems, 25(1), 1-30. doi:10.1002/int.20386

Zhou, L.-G., & Chen, H. (2010). Generalized ordered weighted logarithm aggregation operators and their applications to group decision making. International Journal of Intelligent Systems, n/a-n/a. doi:10.1002/int.20419

Zhou, L.-G., & Chen, H.-Y. (2011). Continuous generalized OWA operator and its application to decision making. Fuzzy Sets and Systems, 168(1), 18-34. doi:10.1016/j.fss.2010.05.009

Zhou, L., & Chen, H. (2012). A generalization of the power aggregation operators for linguistic environment and its application in group decision making. Knowledge-Based Systems, 26, 216-224. doi:10.1016/j.knosys.2011.08.004

Zhou, L., Chen, H., & Liu, J. (2011). Generalized Multiple Averaging Operators and their Applications to Group Decision Making. Group Decision and Negotiation, 22(2), 331-358. doi:10.1007/s10726-011-9267-1

Zhou, L., Chen, H., & Liu, J. (2012). Generalized power aggregation operators and their applications in group decision making. Computers & Industrial Engineering, 62(4), 989-999. doi:10.1016/j.cie.2011.12.025

Zhou, L.-G., Chen, H.-Y., Merigó, J. M., & Gil-Lafuente, A. M. (2012). Uncertain generalized aggregation operators. Expert Systems with Applications, 39(1), 1105-1117. doi:10.1016/j.eswa.2011.07.110

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem