- -

User-defined Machine Learning Functions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

User-defined Machine Learning Functions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Herrmann, Markus es_ES
dc.contributor.author Fiedler, Marc es_ES
dc.date.accessioned 2020-09-08T11:02:24Z
dc.date.available 2020-09-08T11:02:24Z
dc.date.issued 2020-07-10
dc.identifier.isbn 9788490488324
dc.identifier.uri http://hdl.handle.net/10251/149581
dc.description.abstract [EN] In Data Science practices it is commonly assumed and accepted to abstract and slice big data architectures into functional layers, in particular a triad of governance-, data analysis- and persistence layer. However, moving input data to analysis, which is required when abstracting a data persistence layer from a data analysis layer, needs to be considered as highly expensive at large scale. Especially in Machine Learning (ML), the data analytics layer module requires intense data movements during preprocessing, data integration, preparation and analytics steps. Therefore, we propose to consider an application of User-defined functions (UDFs) with ML capabilities directly at the data persistence layer, i.e. at the database. We observed that it might be overall most efficient in traditional on-premise (i.e. non-cloud) RDBMS environments to apply ML UDFs if only singular and self-contained ML tasks should be integrated. Whereas the availability of ML functions in databases was predominantly owned by proprietary solutions in the past, there are now entirely new opportunities to integrate Python ML libraries with open source RDBMS. Whilst considering Python as one dominant language for ML applications in Data Science, the now achieved facilitation of Python ML UDFs consequently opens a broad range of opportunities to add Python ML capabilities to already existing persistence layers - without having to build an additional data analysis layer and related pipeline. With this presentation we deliver preliminary results of our industry research about database centric ML applications, and we open source code for the application of (un)supervised learning models. es_ES
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Web data es_ES
dc.subject Internet data es_ES
dc.subject Big data es_ES
dc.subject Qca es_ES
dc.subject Pls es_ES
dc.subject Sem es_ES
dc.subject Conference es_ES
dc.subject Machine Learning Engineering es_ES
dc.subject RDBMS es_ES
dc.subject UDF es_ES
dc.subject MLUDF es_ES
dc.title User-defined Machine Learning Functions es_ES
dc.type Comunicación en congreso es_ES
dc.type Otros es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Herrmann, M.; Fiedler, M. (2020). User-defined Machine Learning Functions. Editorial Universitat Politècnica de València. http://hdl.handle.net/10251/149581 es_ES
dc.description.accrualMethod OCS es_ES
dc.relation.conferencename CARMA 2020 - 3rd International Conference on Advanced Research Methods and Analytics es_ES
dc.relation.conferencedate Julio 08-09,2020 es_ES
dc.relation.conferenceplace Valencia, Spain es_ES
dc.relation.publisherversion http://ocs.editorial.upv.es/index.php/CARMA/CARMA2020/paper/view/11564 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela OCS\11564 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem