- -

Investigating inefficiencies of bookmaker odds in football using machine learning

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Investigating inefficiencies of bookmaker odds in football using machine learning

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mangold, Benedikt es_ES
dc.contributor.author Stübinger, Johannes es_ES
dc.date.accessioned 2020-09-08T11:09:14Z
dc.date.available 2020-09-08T11:09:14Z
dc.date.issued 2020-05-14
dc.identifier.isbn 9788490488324
dc.identifier.uri http://hdl.handle.net/10251/149584
dc.description.abstract [EN] The efficient-market hypothesis states that it is impossible to beat the market, as the price reflects all available information. Applied to bookmaker odds for football games, there should not be a systematic way of winning money on the long run.However, we show that by using simple machine learning models we can systematically outperform the markets belief manifested through the bookmakers odds. The effect of this inefficiency is diminishing over time, which indicates that the knowledge that has been derived from and the pure amount of the data is also reflected in the odds in recent times.We give some insights how this effect differs across major football leagues in Europe, which algorithms are performing best and statistics on the ROI using machine learning in football betting. Additionally, we share how the simulation study has been designed in more detail. es_ES
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Web data es_ES
dc.subject Internet data es_ES
dc.subject Big data es_ES
dc.subject Qca es_ES
dc.subject Pls es_ES
dc.subject Sem es_ES
dc.subject Conference es_ES
dc.subject Machine Learning es_ES
dc.subject Football es_ES
dc.title Investigating inefficiencies of bookmaker odds in football using machine learning es_ES
dc.type Capítulo de libro es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.4995/CARMA2020.2020.11619
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Mangold, B.; Stübinger, J. (2020). Investigating inefficiencies of bookmaker odds in football using machine learning. Editorial Universitat Politècnica de València. 173-179. https://doi.org/10.4995/CARMA2020.2020.11619 es_ES
dc.description.accrualMethod OCS es_ES
dc.relation.conferencename CARMA 2020 - 3rd International Conference on Advanced Research Methods and Analytics es_ES
dc.relation.conferencedate Julio 08-09,2020 es_ES
dc.relation.conferenceplace Valencia, Spain es_ES
dc.relation.publisherversion http://ocs.editorial.upv.es/index.php/CARMA/CARMA2020/paper/view/11619 es_ES
dc.description.upvformatpinicio 173 es_ES
dc.description.upvformatpfin 179 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela OCS\11619 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem