- -

Comparative multivariate forecast performance for the G7 Stock Markets: VECM Models vs deep learning LSTM neural networks

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Comparative multivariate forecast performance for the G7 Stock Markets: VECM Models vs deep learning LSTM neural networks

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mendes, Diana es_ES
dc.contributor.author Ferreira, Nuno Rafael es_ES
dc.contributor.author Mendes, Vivaldo es_ES
dc.date.accessioned 2020-09-08T11:32:04Z
dc.date.available 2020-09-08T11:32:04Z
dc.date.issued 2020-06-30
dc.identifier.isbn 9788490488324
dc.identifier.uri http://hdl.handle.net/10251/149596
dc.description.abstract [EN] The prediction of stock prices dynamics is a challenging task since these kind of financial datasets are characterized by irregular fluctuations, nonlinear patterns and high uncertainty dynamic changes.The deep neural network models, and in particular the LSTM algorithm, have been increasingly used by researchers for analysis, trading and prediction of stock market time series, appointing an important role in today’s economy.The main purpose of this paper focus on the analysis and forecast of the Standard & Poor’s index by employing multivariate modelling on several correlated stock market indexes and interest rates with the support of VECM trends corrected by a LSTM recurrent neural network. es_ES
dc.language Inglés es_ES
dc.publisher Editorial Universitat Politècnica de València es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Web data es_ES
dc.subject Internet data es_ES
dc.subject Big data es_ES
dc.subject Qca es_ES
dc.subject Pls es_ES
dc.subject Sem es_ES
dc.subject Conference es_ES
dc.subject Stock markets es_ES
dc.subject Multivariate forecasting es_ES
dc.subject VECM es_ES
dc.subject LSTM es_ES
dc.title Comparative multivariate forecast performance for the G7 Stock Markets: VECM Models vs deep learning LSTM neural networks es_ES
dc.type Capítulo de libro es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.4995/CARMA2020.2020.11616
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Mendes, D.; Ferreira, NR.; Mendes, V. (2020). Comparative multivariate forecast performance for the G7 Stock Markets: VECM Models vs deep learning LSTM neural networks. Editorial Universitat Politècnica de València. 163-171. https://doi.org/10.4995/CARMA2020.2020.11616 es_ES
dc.description.accrualMethod OCS es_ES
dc.relation.conferencename CARMA 2020 - 3rd International Conference on Advanced Research Methods and Analytics es_ES
dc.relation.conferencedate Julio 08-09,2020 es_ES
dc.relation.conferenceplace Valencia, Spain es_ES
dc.relation.publisherversion http://ocs.editorial.upv.es/index.php/CARMA/CARMA2020/paper/view/11616 es_ES
dc.description.upvformatpinicio 163 es_ES
dc.description.upvformatpfin 171 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.pasarela OCS\11616 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem