Mostrar el registro sencillo del ítem
dc.contributor.author | Schlosser, Stephan | es_ES |
dc.contributor.author | Toninelli, Daniele | es_ES |
dc.contributor.author | Cameletti, Michela | es_ES |
dc.date.accessioned | 2020-09-08T12:13:12Z | |
dc.date.available | 2020-09-08T12:13:12Z | |
dc.date.issued | 2020-05-12 | |
dc.identifier.isbn | 9788490488324 | |
dc.identifier.uri | http://hdl.handle.net/10251/149605 | |
dc.description.abstract | [EN] In current times Internet and social media have become almost unavoidabletools to support research and decision making processes in various fields.Nevertheless, the collection and use of data retrieved from these types ofsources pose different challenges. In a previous paper we compared theefficiency of three alternative methods used to retrieve geolocated tweets overan entire country (United Kingdom). One method resulted as the bestcompromise in terms of both the effort needed to set it and quantity/quality ofdata collected. In this work we further check, in term of content, whether thethree compared methods are able to produce “similar information”. Inparticular, we aim at checking whether there are differences in the level ofsentiment estimated using tweets coming from the three methods. In doing so,we take into account both a cross-section and a longitudinal perspective. Ourresults confirm that our current best option does not show any significantdifference in the sentiment, producing globally scores in between the scoresobtained using the two alternative methods. Thus, such a flexible and reliablemethod can be implemented in the data collection of geolocated tweets in othercountries and for other studies based on the sentiment analysis. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Editorial Universitat Politècnica de València | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Web data | es_ES |
dc.subject | Internet data | es_ES |
dc.subject | Big data | es_ES |
dc.subject | Qca | es_ES |
dc.subject | Pls | es_ES |
dc.subject | Sem | es_ES |
dc.subject | Conference | es_ES |
dc.subject | Social media data collection methods | es_ES |
dc.subject | Twitter data | es_ES |
dc.subject | Sentiment Analysis | es_ES |
dc.subject | Social network | es_ES |
dc.subject | Geographical studies | es_ES |
dc.title | Comparing Methods to Retrieve Tweets: a Sentiment Approach | es_ES |
dc.type | Capítulo de libro | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.identifier.doi | 10.4995/CARMA2020.2020.11653 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Schlosser, S.; Toninelli, D.; Cameletti, M. (2020). Comparing Methods to Retrieve Tweets: a Sentiment Approach. Editorial Universitat Politècnica de València. 299-306. https://doi.org/10.4995/CARMA2020.2020.11653 | es_ES |
dc.description.accrualMethod | OCS | es_ES |
dc.relation.conferencename | CARMA 2020 - 3rd International Conference on Advanced Research Methods and Analytics | es_ES |
dc.relation.conferencedate | Julio 08-09,2020 | es_ES |
dc.relation.conferenceplace | Valencia, Spain | es_ES |
dc.relation.publisherversion | http://ocs.editorial.upv.es/index.php/CARMA/CARMA2020/paper/view/11653 | es_ES |
dc.description.upvformatpinicio | 299 | es_ES |
dc.description.upvformatpfin | 306 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.relation.pasarela | OCS\11653 | es_ES |