- -

High-pressure structural, elastic, and thermodynamic properties of zircon-type HoPO4 and TmPO4

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by


  • Estadisticas de Uso

High-pressure structural, elastic, and thermodynamic properties of zircon-type HoPO4 and TmPO4

Show full item record

Gomis, O.; Lavina, B.; Rodriguez-Hernandez, P.; Muñoz, A.; Errandonea, R.; Errandonea, D.; Bettinelli, M. (2017). High-pressure structural, elastic, and thermodynamic properties of zircon-type HoPO4 and TmPO4. Journal of Physics Condensed Matter. 29(9):1-13. https://doi.org/10.1088/1361-648X/aa516a

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/149643

Files in this item

Item Metadata

Title: High-pressure structural, elastic, and thermodynamic properties of zircon-type HoPO4 and TmPO4
Author: Gomis, O. Lavina, B. Rodriguez-Hernandez, P. Muñoz, A. Errandonea, R. Errandonea, Daniel Bettinelli, M.
UPV Unit: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Issued date:
[EN] Zircon-type holmium phosphate (HoPO4) and thulium phosphate (TmPO4) have been studied by single-crystal x-ray diffraction and ab initio calculations. We report on the influence of pressure on the crystal structure, ...[+]
Subjects: Zircon , Orthophosphate , Elastic properties , Equation of state , Ab initio calculations , X-ray diffraction , High pressure
Copyrigths: Reserva de todos los derechos
Journal of Physics Condensed Matter. (issn: 0953-8984 )
DOI: 10.1088/1361-648X/aa516a
IOP Publishing
Publisher version: https://doi.org/10.1088/1361-648X/aa516a
Project ID:
info:eu-repo/grantAgreement/NSF//1157758/US/Consortium for Materials Properties Research in Earth Sciences (COMPRES): National Facilities and Infrastructure Development for High-Pressure Geosciences Research/
info:eu-repo/grantAgreement/NSF//1128799/US/GeoSoilEnviroCARS: A National Resource for Earth, Planetary, Soil and Environmental Science Research at the APS/
info:eu-repo/grantAgreement/MINECO//MAT2013-46649-C4-2-P/ES/OXIDOS METALICOS ABO3 EN CONDICIONES EXTREMAS/
This research is partially supported by the Spanish government MINECO under Grants No: MAT2016-75586-C4-1-P/2-P/3-P, MAT2013-46649-C4-1-P/2-P/3-P and MAT2015-71070-REDC. A.M. and P.R-H. acknowledge computing time provided ...[+]
Type: Artículo


Ni, Y., Hughes, J. M., & Mariano, A. N. (1995). Crystal chemistry of the monazite and xenotime structures. American Mineralogist, 80(1-2), 21-26. doi:10.2138/am-1995-1-203

Stavrou, E., Tatsi, A., Salpea, E., Boulmetis, Y. C., Kontos, A. G., Raptis, Y. S., & Raptis, C. (2008). Raman study of zircon-structured RPO4(R = Y, Tb, Er, Tm) phosphates at high pressures. Journal of Physics: Conference Series, 121(4), 042016. doi:10.1088/1742-6596/121/4/042016

Kontos, A. G., Stavrou, E., Malamos, V., Raptis, Y. S., & Raptis, C. (2007). High pressure Raman study of DyPO4 at room and low temperatures. physica status solidi (b), 244(1), 386-391. doi:10.1002/pssb.200672521 [+]
Ni, Y., Hughes, J. M., & Mariano, A. N. (1995). Crystal chemistry of the monazite and xenotime structures. American Mineralogist, 80(1-2), 21-26. doi:10.2138/am-1995-1-203

Stavrou, E., Tatsi, A., Salpea, E., Boulmetis, Y. C., Kontos, A. G., Raptis, Y. S., & Raptis, C. (2008). Raman study of zircon-structured RPO4(R = Y, Tb, Er, Tm) phosphates at high pressures. Journal of Physics: Conference Series, 121(4), 042016. doi:10.1088/1742-6596/121/4/042016

Kontos, A. G., Stavrou, E., Malamos, V., Raptis, Y. S., & Raptis, C. (2007). High pressure Raman study of DyPO4 at room and low temperatures. physica status solidi (b), 244(1), 386-391. doi:10.1002/pssb.200672521

Stavrou, E., Tatsi, A., Raptis, C., Efthimiopoulos, I., Syassen, K., Muñoz, A., … Hanfland, M. (2012). Effects of pressure on the structure and lattice dynamics of TmPO4: Experiments and calculations. Physical Review B, 85(2). doi:10.1103/physrevb.85.024117

Tatsi, A., Stavrou, E., Boulmetis, Y. C., Kontos, A. G., Raptis, Y. S., & Raptis, C. (2008). Raman study of tetragonal TbPO4and observation of a first-order phase transition at high pressure. Journal of Physics: Condensed Matter, 20(42), 425216. doi:10.1088/0953-8984/20/42/425216

Zhang, F. X., Wang, J. W., Lang, M., Zhang, J. M., Ewing, R. C., & Boatner, L. A. (2009). High-pressure phase transitions ofScPO4andYPO4. Physical Review B, 80(18). doi:10.1103/physrevb.80.184114

Heffernan, K. M., Ross, N. L., Spencer, E. C., & Boatner, L. A. (2016). The structural response of gadolinium phosphate to pressure. Journal of Solid State Chemistry, 241, 180-186. doi:10.1016/j.jssc.2016.06.009

López-Solano, J., Rodríguez-Hernández, P., Muñoz, A., Gomis, O., Santamaría-Perez, D., Errandonea, D., … Raptis, C. (2010). Theoretical and experimental study of the structural stability ofTbPO4at high pressures. Physical Review B, 81(14). doi:10.1103/physrevb.81.144126

Lacomba-Perales, R., Errandonea, D., Meng, Y., & Bettinelli, M. (2010). High-pressure stability and compressibility ofAPO4(A=La, Nd, Eu, Gd, Er, and Y) orthophosphates: An x-ray diffraction study using synchrotron radiation. Physical Review B, 81(6). doi:10.1103/physrevb.81.064113

Tschauner, O., Ushakov, S. V., Navrotsky, A., & Boatner, L. A. (2016). Phase transformations and indications for acoustic mode softening in Tb-Gd orthophosphate. Journal of Physics: Condensed Matter, 28(3), 035403. doi:10.1088/0953-8984/28/3/035403

Zhang, F. X., Lang, M., Ewing, R. C., Lian, J., Wang, Z. W., Hu, J., & Boatner, L. A. (2008). Pressure-induced zircon-type to scheelite-type phase transitions in YbPO4 and LuPO4. Journal of Solid State Chemistry, 181(10), 2633-2638. doi:10.1016/j.jssc.2008.06.042

Bose, P. P., Mittal, R., Chaplot, S. L., Loong, C.-K., & Boatner, L. A. (2010). Inelastic neutron scattering, lattice dynamics, and high-pressure phase stability of zircon-structured lanthanide orthophosphates. Physical Review B, 82(9). doi:10.1103/physrevb.82.094309

Mittal, R., Chaplot, S. L., Choudhury, N., & Loong, C.-K. (2007). Inelastic neutron scattering, lattice dynamics and high-pressure phase stability in LuPO4and YbPO4. Journal of Physics: Condensed Matter, 19(44), 446202. doi:10.1088/0953-8984/19/44/446202

Feng, J., Xiao, B., Zhou, R., & Pan, W. (2013). Anisotropy in elasticity and thermal conductivity of monazite-type REPO4 (RE=La, Ce, Nd, Sm, Eu and Gd) from first-principles calculations. Acta Materialia, 61(19), 7364-7383. doi:10.1016/j.actamat.2013.08.043

Hay, R. S., Boakye, E. E., & Mogilevsky, P. (2014). Transformation plasticity in TbPO4 and (Gd,Dy)PO4 orthophosphates during indentation of polycrystalline specimens. Journal of the European Ceramic Society, 34(3), 773-781. doi:10.1016/j.jeurceramsoc.2013.09.008

Harley, R. T., & Manning, D. I. (1978). Jahn-Teller induced elastic constant changes in TmPO4. Journal of Physics C: Solid State Physics, 11(15), L633-L636. doi:10.1088/0022-3719/11/15/005

Mogilevsky, P., Zaretsky, E. B., Parthasarathy, T. A., & Meisenkothen, F. (2006). Composition, lattice parameters, and room temperature elastic constants of natural single crystal xenotime from Novo Horizonte. Physics and Chemistry of Minerals, 33(10), 691-698. doi:10.1007/s00269-006-0118-6

Nipko, J., Grimsditch, M., Loong, C.-K., Kern, S., Abraham, M. M., & Boatner, L. A. (1996). Elastic-constant anomalies inYbPO4. Physical Review B, 53(5), 2286-2290. doi:10.1103/physrevb.53.2286

Thomä, R., Wehrle, H., & Armbruster, A. (1974). Measurement of the elastic constants of LuAsO4 and LuPO4 by Brillouin scattering and determination of the Debye temperatures. Physica Status Solidi (a), 24(1), K71-K73. doi:10.1002/pssa.2210240154

Li, H., Zhang, S., Zhou, S., & Cao, X. (2009). Bonding Characteristics, Thermal Expansibility, and Compressibility of RXO4(R = Rare Earths, X = P, As) within Monazite and Zircon Structures. Inorganic Chemistry, 48(10), 4542-4548. doi:10.1021/ic900337j

Errandonea, D., & Manjón, F. J. (2008). Pressure effects on the structural and electronic properties of ABX4 scintillating crystals. Progress in Materials Science, 53(4), 711-773. doi:10.1016/j.pmatsci.2008.02.001

FEIGELSON, R. S. (1964). Synthesis and Single-Crystal Growth of Rare-Earth Orthophosphates. Journal of the American Ceramic Society, 47(5), 257-258. doi:10.1111/j.1151-2916.1964.tb14409.x

Mao, H. K., Xu, J., & Bell, P. M. (1986). Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. Journal of Geophysical Research, 91(B5), 4673. doi:10.1029/jb091ib05p04673

Fei, Y., Li, J., Hirose, K., Minarik, W., Van Orman, J., Sanloup, C., … Funakoshi, K. (2004). A critical evaluation of pressure scales at high temperatures by in situ X-ray diffraction measurements. Physics of the Earth and Planetary Interiors, 143-144, 515-526. doi:10.1016/j.pepi.2003.09.018

Errandonea, D., Muñoz, A., & Gonzalez-Platas, J. (2014). Comment on «High-pressure x-ray diffraction study of YBO3/Eu3+, GdBO3, and EuBO3: Pressure-induced amorphization in GdBO3» [J. Appl. Phys. 115, 043507 (2014)]. Journal of Applied Physics, 115(21), 216101. doi:10.1063/1.4881057

Errandonea, D. (2015). Exploring the properties of MTO4compounds using high-pressure powder x-ray diffraction. Crystal Research and Technology, 50(9-10), 729-736. doi:10.1002/crat.201500010

Hammersley, A. P., Svensson, S. O., Hanfland, M., Fitch, A. N., & Hausermann, D. (1996). Two-dimensional detector software: From real detector to idealised image or two-theta scan. High Pressure Research, 14(4-6), 235-248. doi:10.1080/08957959608201408

Dera, P., Zhuravlev, K., Prakapenka, V., Rivers, M. L., Finkelstein, G. J., Grubor-Urosevic, O., … Downs, R. T. (2013). High pressure single-crystal micro X-ray diffraction analysis with GSE_ADA/RSV software. High Pressure Research, 33(3), 466-484. doi:10.1080/08957959.2013.806504

Sheldrick, G. M. (2007). A short history ofSHELX. Acta Crystallographica Section A Foundations of Crystallography, 64(1), 112-122. doi:10.1107/s0108767307043930

Hohenberg, P., & Kohn, W. (1964). Inhomogeneous Electron Gas. Physical Review, 136(3B), B864-B871. doi:10.1103/physrev.136.b864

Mujica, A., Rubio, A., Muñoz, A., & Needs, R. J. (2003). High-pressure phases of group-IV, III–V, and II–VI compounds. Reviews of Modern Physics, 75(3), 863-912. doi:10.1103/revmodphys.75.863

Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set. Physical Review B, 54(16), 11169-11186. doi:10.1103/physrevb.54.11169

Blöchl, P. E. (1994). Projector augmented-wave method. Physical Review B, 50(24), 17953-17979. doi:10.1103/physrevb.50.17953

Perdew, J. P., Burke, K., & Ernzerhof, M. (1997). Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)]. Physical Review Letters, 78(7), 1396-1396. doi:10.1103/physrevlett.78.1396

Chetty, N., Muoz, A., & Martin, R. M. (1989). First-principles calculation of the elastic constants of AlAs. Physical Review B, 40(17), 11934-11936. doi:10.1103/physrevb.40.11934

Le Page, Y., & Saxe, P. (2002). Symmetry-general least-squares extraction of elastic data for strained materials fromab initiocalculations of stress. Physical Review B, 65(10). doi:10.1103/physrevb.65.104104

Beckstein, O., Klepeis, J. E., Hart, G. L. W., & Pankratov, O. (2001). First-principles elastic constants and electronic structure ofα−Pt2Siand PtSi. Physical Review B, 63(13). doi:10.1103/physrevb.63.134112

Parlinski, K., Li, Z. Q., & Kawazoe, Y. (1997). First-Principles Determination of the Soft Mode in CubicZrO2. Physical Review Letters, 78(21), 4063-4066. doi:10.1103/physrevlett.78.4063

Errandonea, D., Ferrer-Roca, C., Martínez-Garcia, D., Segura, A., Gomis, O., Muñoz, A., … Sapiña, F. (2010). High-pressure x-ray diffraction andab initiostudy ofNi2Mo3N,Pd2Mo3N,Pt2Mo3N,Co3Mo3N, andFe3Mo3N: Two families of ultra-incompressible bimetallic interstitial nitrides. Physical Review B, 82(17). doi:10.1103/physrevb.82.174105

Errandonea, D., Ruiz-Fuertes, J., Sans, J. A., Santamaría-Perez, D., Gomis, O., Gómez, A., & Sapiña, F. (2012). Compressibility and structural stability of ultra-incompressible bimetallic interstitial carbides and nitrides. Physical Review B, 85(14). doi:10.1103/physrevb.85.144103

Recio, J. M., Franco, R., Martín Pendás, A., Blanco, M. A., Pueyo, L., & Pandey, R. (2001). Theoretical explanation of the uniform compressibility behavior observed in oxide spinels. Physical Review B, 63(18). doi:10.1103/physrevb.63.184101

Momma, K., & Izumi, F. (2011). VESTA 3for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44(6), 1272-1276. doi:10.1107/s0021889811038970

Errandonea, D., Muñoz, A., Rodríguez-Hernández, P., Gomis, O., Achary, S. N., Popescu, C., … Tyagi, A. K. (2016). High-Pressure Crystal Structure, Lattice Vibrations, and Band Structure of BiSbO4. Inorganic Chemistry, 55(10), 4958-4969. doi:10.1021/acs.inorgchem.6b00503

Wallace, D. C. (1970). Thermoelastic Theory of Stressed Crystals and Higher-Order Elastic Constants. Solid State Physics, 301-404. doi:10.1016/s0081-1947(08)60010-7

Wang, J., Yip, S., Phillpot, S. R., & Wolf, D. (1993). Crystal instabilities at finite strain. Physical Review Letters, 71(25), 4182-4185. doi:10.1103/physrevlett.71.4182

Wang, J., Li, J., Yip, S., Phillpot, S., & Wolf, D. (1995). Mechanical instabilities of homogeneous crystals. Physical Review B, 52(17), 12627-12635. doi:10.1103/physrevb.52.12627

Zhou, Z., & Joós, B. (1996). Stability criteria for homogeneously stressed materials and the calculation of elastic constants. Physical Review B, 54(6), 3841-3850. doi:10.1103/physrevb.54.3841

Speziale, S., Jiang, F., Mao, Z., Monteiro, P. J. M., Wenk, H.-R., Duffy, T. S., & Schilling, F. R. (2008). Single-crystal elastic constants of natural ettringite. Cement and Concrete Research, 38(7), 885-889. doi:10.1016/j.cemconres.2008.02.004

Farley, J. M., & Saunders, G. A. (1972). Ultrasonic study of the elastic behaviour of calcium tungstate between 1.5 K and 300 K. Journal of Physics C: Solid State Physics, 5(21), 3021-3037. doi:10.1088/0022-3719/5/21/008

Ravindran, P., Fast, L., Korzhavyi, P. A., Johansson, B., Wills, J., & Eriksson, O. (1998). Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2. Journal of Applied Physics, 84(9), 4891-4904. doi:10.1063/1.368733

Reuss, A. (1929). Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik, 9(1), 49-58. doi:10.1002/zamm.19290090104

Hill, R. (1952). The Elastic Behaviour of a Crystalline Aggregate. Proceedings of the Physical Society. Section A, 65(5), 349-354. doi:10.1088/0370-1298/65/5/307

Caracas, R., & Boffa Ballaran, T. (2010). Elasticity of (K,Na)AlSi3O8 hollandite from lattice dynamics calculations. Physics of the Earth and Planetary Interiors, 181(1-2), 21-26. doi:10.1016/j.pepi.2010.04.004

Gomis, O., Santamaría-Pérez, D., Ruiz-Fuertes, J., Sans, J. A., Vilaplana, R., Ortiz, H. M., … Mollar, M. (2014). High-pressure structural and elastic properties of Tl2O3. Journal of Applied Physics, 116(13), 133521. doi:10.1063/1.4897241

Brazhkin, V. V., Lyapin, A. G., & Hemley, R. J. (2002). Harder than diamond: Dreams and reality. Philosophical Magazine A, 82(2), 231-253. doi:10.1080/01418610208239596

Greaves, G. N., Greer, A. L., Lakes, R. S., & Rouxel, T. (2011). Poisson’s ratio and modern materials. Nature Materials, 10(11), 823-837. doi:10.1038/nmat3134

Pugh, S. F. (1954). XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 45(367), 823-843. doi:10.1080/14786440808520496

TVERGAARD, V., & HUTCHINSON, J. W. (1988). Microcracking in Ceramics Induced by Thermal Expansion or Elastic Anisotropy. Journal of the American Ceramic Society, 71(3), 157-166. doi:10.1111/j.1151-2916.1988.tb05022.x

Ranganathan, S. I., & Ostoja-Starzewski, M. (2008). Universal Elastic Anisotropy Index. Physical Review Letters, 101(5). doi:10.1103/physrevlett.101.055504

Tian, Y., Xu, B., & Zhao, Z. (2012). Microscopic theory of hardness and design of novel superhard crystals. International Journal of Refractory Metals and Hard Materials, 33, 93-106. doi:10.1016/j.ijrmhm.2012.02.021

Poirier, J.-P. (2000). Introduction to the Physics of the Earth’s Interior. doi:10.1017/cbo9781139164467

Anderson, O. L. (1963). A simplified method for calculating the debye temperature from elastic constants. Journal of Physics and Chemistry of Solids, 24(7), 909-917. doi:10.1016/0022-3697(63)90067-2

Marmier, A., Lethbridge, Z. A. D., Walton, R. I., Smith, C. W., Parker, S. C., & Evans, K. E. (2010). ElAM: A computer program for the analysis and representation of anisotropic elastic properties. Computer Physics Communications, 181(12), 2102-2115. doi:10.1016/j.cpc.2010.08.033

Clarke, D. R. (2003). Materials selection guidelines for low thermal conductivity thermal barrier coatings. Surface and Coatings Technology, 163-164, 67-74. doi:10.1016/s0257-8972(02)00593-5

Levi, C. G. (2004). Emerging materials and processes for thermal barrier systems. Current Opinion in Solid State and Materials Science, 8(1), 77-91. doi:10.1016/j.cossms.2004.03.009

Hikichi, Y., Ota, T., Daimon, K., Hattori, T., & Mizuno, M. (2005). Thermal, Mechanical, and Chemical Properties of Sintered Xenotime-Type RPO4 (R = Y, Er, Yb, or Lu). Journal of the American Ceramic Society, 81(8), 2216-2218. doi:10.1111/j.1151-2916.1998.tb02613.x

Wallace, D. C. (1967). Thermoelasticity of Stressed Materials and Comparison of Various Elastic Constants. Physical Review, 162(3), 776-789. doi:10.1103/physrev.162.776

Grimvall, G., Magyari-Köpe, B., Ozoliņš, V., & Persson, K. A. (2012). Lattice instabilities in metallic elements. Reviews of Modern Physics, 84(2), 945-986. doi:10.1103/revmodphys.84.945

Errandonea, D., Manjón, F. J., Muñoz, A., Rodríguez-Hernández, P., Panchal, V., Achary, S. N., & Tyagi, A. K. (2013). High-pressure polymorphs of TbVO4: A Raman and ab initio study. Journal of Alloys and Compounds, 577, 327-335. doi:10.1016/j.jallcom.2013.06.008

Dawson, P., Hargreave, M. M., & Wilkinson, G. R. (1971). The vibrational spectrum of zircon (zrsio4). Journal of Physics C: Solid State Physics, 4(2), 240-256. doi:10.1088/0022-3719/4/2/014

Yue, B., Hong, F., Merkel, S., Tan, D., Yan, J., Chen, B., & Mao, H.-K. (2016). Deformation Behavior across the Zircon-Scheelite Phase Transition. Physical Review Letters, 117(13). doi:10.1103/physrevlett.117.135701

Errandonea, D., Pellicer-Porres, J., Martínez-García, D., Ruiz-Fuertes, J., Friedrich, A., Morgenroth, W., … Bettinelli, M. (2016). Phase Stability of Lanthanum Orthovanadate at High Pressure. The Journal of Physical Chemistry C, 120(25), 13749-13762. doi:10.1021/acs.jpcc.6b04782

Errandonea, D., Gomis, O., Santamaría-Perez, D., García-Domene, B., Muñoz, A., Rodríguez-Hernández, P., … Popescu, C. (2015). Exploring the high-pressure behavior of the three known polymorphs of BiPO4: Discovery of a new polymorph. Journal of Applied Physics, 117(10), 105902. doi:10.1063/1.4914407

Gleissner, J., Errandonea, D., Segura, A., Pellicer-Porres, J., Hakeem, M. A., Proctor, J. E., … Bettinelli, M. (2016). Monazite-type SrCrO4 under compression. Physical Review B, 94(13). doi:10.1103/physrevb.94.134108




This item appears in the following Collection(s)

Show full item record