- -

High-pressure structural, elastic, and thermodynamic properties of zircon-type HoPO4 and TmPO4

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

High-pressure structural, elastic, and thermodynamic properties of zircon-type HoPO4 and TmPO4

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gomis, O. es_ES
dc.contributor.author Lavina, B. es_ES
dc.contributor.author Rodriguez-Hernandez, P. es_ES
dc.contributor.author Muñoz, A. es_ES
dc.contributor.author Errandonea, R. es_ES
dc.contributor.author Errandonea, Daniel es_ES
dc.contributor.author Bettinelli, M. es_ES
dc.date.accessioned 2020-09-09T03:31:39Z
dc.date.available 2020-09-09T03:31:39Z
dc.date.issued 2017-03-08 es_ES
dc.identifier.issn 0953-8984 es_ES
dc.identifier.uri http://hdl.handle.net/10251/149643
dc.description.abstract [EN] Zircon-type holmium phosphate (HoPO4) and thulium phosphate (TmPO4) have been studied by single-crystal x-ray diffraction and ab initio calculations. We report on the influence of pressure on the crystal structure, and on the elastic and thermodynamic properties. The equation of state for both compounds is accurately determined. We have also obtained information on the polyhedral compressibility which is used to explain the anisotropic axial compressibility and the bulk compressibility. Both compounds are ductile and more resistive to volume compression than to shear deformation at all pressures. Furthermore, the elastic anisotropy is enhanced upon compression. Finally, the calculations indicate that the possible causes that make the zircon structure unstable are mechanical instabilities and the softening of a silent B-1u mode. es_ES
dc.description.sponsorship This research is partially supported by the Spanish government MINECO under Grants No: MAT2016-75586-C4-1-P/2-P/3-P, MAT2013-46649-C4-1-P/2-P/3-P and MAT2015-71070-REDC. A.M. and P.R-H. acknowledge computing time provided by Red Espanola de Supercomputacion (RES) and MALTA-Cluster. This work was also partially supported by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Cooperative Agreement No. DE-NA0001982. Part of this work was conducted at HPCAT (Sector 16), Advanced Photon Source (APS), Argonne National Laboratory and at the Advanced Light Source (ALS), Lawrence Berkeley National Laboratory (LBNL). HPCAT operations are supported by DOE-NNSA under Award No. DE-NA0001974 and DOE-BES under Award No. DE-FG02-99ER45775, with partial instrumentation funding by NSF. APS is supported by DOE-BES, under Contract No. DE-AC02-06CH11357. The ALS is supported by the Director, Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Use of the COMPRES-GSECARS gas loading system was supported by COMPRES under NSF Cooperative Agreement EAR 11-57758 and by GSECARS through NSF grant EAR-1128799 and DOE grant DE-FG02-94ER14466. es_ES
dc.language Inglés es_ES
dc.publisher IOP Publishing es_ES
dc.relation.ispartof Journal of Physics Condensed Matter es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Zircon es_ES
dc.subject Orthophosphate es_ES
dc.subject Elastic properties es_ES
dc.subject Equation of state es_ES
dc.subject Ab initio calculations es_ES
dc.subject X-ray diffraction es_ES
dc.subject High pressure es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title High-pressure structural, elastic, and thermodynamic properties of zircon-type HoPO4 and TmPO4 es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1088/1361-648X/aa516a es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DOE//DE-AC02-06CH11357/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSF//1157758/US/Consortium for Materials Properties Research in Earth Sciences (COMPRES): National Facilities and Infrastructure Development for High-Pressure Geosciences Research/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSF//1128799/US/GeoSoilEnviroCARS: A National Resource for Earth, Planetary, Soil and Environmental Science Research at the APS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2016-75586-C4-1-P/ES/OXIDOS METALICOS BAJO CONDICIONES EXTREMAS: SINTESIS Y CARACTERIZACION DE MATERIALES EN VOLUMEN, NANOCRISTALES Y CAPAS DELGADAS CON APLICACIONES TECNOLOGICAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2016-75586-C4-3-P/ES/ESTUDIO AB INITIO DE COMPUESTOS ABX4, ABO3, A2X3, PEROVSKITAS Y NANOMATERIALES BAJO CONDICIONES EXTREMAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DOE//DE-AC02-05CH11231/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2015-71070-REDC/ES/MATERIA A ALTA PRESION. MALTA-CONSOLIDER TEAM/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2013-46649-C4-2-P/ES/OXIDOS METALICOS ABO3 EN CONDICIONES EXTREMAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2013-46649-C4-3-P/ES/ESTUDIO AB INITIO DE OXIDO METALICOS, MATERIALES Y NANOMATERIALES BAJO CONDICIONES EXTREMAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2016-75586-C4-2-P/ES/COMPUESTOS ABO3 Y A2X3 EN CONDICIONES EXTREMAS DE PRESION Y TEMPERATURA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2013-46649-C4-1-P/ES/ORTOVANADATOS BAJO CONDICIONES EXTREMAS: SINTESIS Y CARACTERIZACION DE MATERIALES EN VOLUMEN Y NANOCRISTALES CON APLICACIONES TECNOLOGICAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DOE//DE-NA0001982/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DOE//DE-NA0001974/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DOE//DE-FG02-99ER45775/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DOE//DE-FG02-94ER14466/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Gomis, O.; Lavina, B.; Rodriguez-Hernandez, P.; Muñoz, A.; Errandonea, R.; Errandonea, D.; Bettinelli, M. (2017). High-pressure structural, elastic, and thermodynamic properties of zircon-type HoPO4 and TmPO4. Journal of Physics Condensed Matter. 29(9):1-13. https://doi.org/10.1088/1361-648X/aa516a es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1088/1361-648X/aa516a es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 29 es_ES
dc.description.issue 9 es_ES
dc.identifier.pmid 28106012 es_ES
dc.relation.pasarela S\321453 es_ES
dc.contributor.funder U.S. Department of Energy es_ES
dc.contributor.funder National Science Foundation, EEUU es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Ni, Y., Hughes, J. M., & Mariano, A. N. (1995). Crystal chemistry of the monazite and xenotime structures. American Mineralogist, 80(1-2), 21-26. doi:10.2138/am-1995-1-203 es_ES
dc.description.references Stavrou, E., Tatsi, A., Salpea, E., Boulmetis, Y. C., Kontos, A. G., Raptis, Y. S., & Raptis, C. (2008). Raman study of zircon-structured RPO4(R = Y, Tb, Er, Tm) phosphates at high pressures. Journal of Physics: Conference Series, 121(4), 042016. doi:10.1088/1742-6596/121/4/042016 es_ES
dc.description.references Kontos, A. G., Stavrou, E., Malamos, V., Raptis, Y. S., & Raptis, C. (2007). High pressure Raman study of DyPO4 at room and low temperatures. physica status solidi (b), 244(1), 386-391. doi:10.1002/pssb.200672521 es_ES
dc.description.references Stavrou, E., Tatsi, A., Raptis, C., Efthimiopoulos, I., Syassen, K., Muñoz, A., … Hanfland, M. (2012). Effects of pressure on the structure and lattice dynamics of TmPO4: Experiments and calculations. Physical Review B, 85(2). doi:10.1103/physrevb.85.024117 es_ES
dc.description.references Tatsi, A., Stavrou, E., Boulmetis, Y. C., Kontos, A. G., Raptis, Y. S., & Raptis, C. (2008). Raman study of tetragonal TbPO4and observation of a first-order phase transition at high pressure. Journal of Physics: Condensed Matter, 20(42), 425216. doi:10.1088/0953-8984/20/42/425216 es_ES
dc.description.references Zhang, F. X., Wang, J. W., Lang, M., Zhang, J. M., Ewing, R. C., & Boatner, L. A. (2009). High-pressure phase transitions ofScPO4andYPO4. Physical Review B, 80(18). doi:10.1103/physrevb.80.184114 es_ES
dc.description.references Heffernan, K. M., Ross, N. L., Spencer, E. C., & Boatner, L. A. (2016). The structural response of gadolinium phosphate to pressure. Journal of Solid State Chemistry, 241, 180-186. doi:10.1016/j.jssc.2016.06.009 es_ES
dc.description.references López-Solano, J., Rodríguez-Hernández, P., Muñoz, A., Gomis, O., Santamaría-Perez, D., Errandonea, D., … Raptis, C. (2010). Theoretical and experimental study of the structural stability ofTbPO4at high pressures. Physical Review B, 81(14). doi:10.1103/physrevb.81.144126 es_ES
dc.description.references Lacomba-Perales, R., Errandonea, D., Meng, Y., & Bettinelli, M. (2010). High-pressure stability and compressibility ofAPO4(A=La, Nd, Eu, Gd, Er, and Y) orthophosphates: An x-ray diffraction study using synchrotron radiation. Physical Review B, 81(6). doi:10.1103/physrevb.81.064113 es_ES
dc.description.references Tschauner, O., Ushakov, S. V., Navrotsky, A., & Boatner, L. A. (2016). Phase transformations and indications for acoustic mode softening in Tb-Gd orthophosphate. Journal of Physics: Condensed Matter, 28(3), 035403. doi:10.1088/0953-8984/28/3/035403 es_ES
dc.description.references Zhang, F. X., Lang, M., Ewing, R. C., Lian, J., Wang, Z. W., Hu, J., & Boatner, L. A. (2008). Pressure-induced zircon-type to scheelite-type phase transitions in YbPO4 and LuPO4. Journal of Solid State Chemistry, 181(10), 2633-2638. doi:10.1016/j.jssc.2008.06.042 es_ES
dc.description.references Bose, P. P., Mittal, R., Chaplot, S. L., Loong, C.-K., & Boatner, L. A. (2010). Inelastic neutron scattering, lattice dynamics, and high-pressure phase stability of zircon-structured lanthanide orthophosphates. Physical Review B, 82(9). doi:10.1103/physrevb.82.094309 es_ES
dc.description.references Mittal, R., Chaplot, S. L., Choudhury, N., & Loong, C.-K. (2007). Inelastic neutron scattering, lattice dynamics and high-pressure phase stability in LuPO4and YbPO4. Journal of Physics: Condensed Matter, 19(44), 446202. doi:10.1088/0953-8984/19/44/446202 es_ES
dc.description.references Feng, J., Xiao, B., Zhou, R., & Pan, W. (2013). Anisotropy in elasticity and thermal conductivity of monazite-type REPO4 (RE=La, Ce, Nd, Sm, Eu and Gd) from first-principles calculations. Acta Materialia, 61(19), 7364-7383. doi:10.1016/j.actamat.2013.08.043 es_ES
dc.description.references Hay, R. S., Boakye, E. E., & Mogilevsky, P. (2014). Transformation plasticity in TbPO4 and (Gd,Dy)PO4 orthophosphates during indentation of polycrystalline specimens. Journal of the European Ceramic Society, 34(3), 773-781. doi:10.1016/j.jeurceramsoc.2013.09.008 es_ES
dc.description.references Harley, R. T., & Manning, D. I. (1978). Jahn-Teller induced elastic constant changes in TmPO4. Journal of Physics C: Solid State Physics, 11(15), L633-L636. doi:10.1088/0022-3719/11/15/005 es_ES
dc.description.references Mogilevsky, P., Zaretsky, E. B., Parthasarathy, T. A., & Meisenkothen, F. (2006). Composition, lattice parameters, and room temperature elastic constants of natural single crystal xenotime from Novo Horizonte. Physics and Chemistry of Minerals, 33(10), 691-698. doi:10.1007/s00269-006-0118-6 es_ES
dc.description.references Nipko, J., Grimsditch, M., Loong, C.-K., Kern, S., Abraham, M. M., & Boatner, L. A. (1996). Elastic-constant anomalies inYbPO4. Physical Review B, 53(5), 2286-2290. doi:10.1103/physrevb.53.2286 es_ES
dc.description.references Thomä, R., Wehrle, H., & Armbruster, A. (1974). Measurement of the elastic constants of LuAsO4 and LuPO4 by Brillouin scattering and determination of the Debye temperatures. Physica Status Solidi (a), 24(1), K71-K73. doi:10.1002/pssa.2210240154 es_ES
dc.description.references Li, H., Zhang, S., Zhou, S., & Cao, X. (2009). Bonding Characteristics, Thermal Expansibility, and Compressibility of RXO4(R = Rare Earths, X = P, As) within Monazite and Zircon Structures. Inorganic Chemistry, 48(10), 4542-4548. doi:10.1021/ic900337j es_ES
dc.description.references Errandonea, D., & Manjón, F. J. (2008). Pressure effects on the structural and electronic properties of ABX4 scintillating crystals. Progress in Materials Science, 53(4), 711-773. doi:10.1016/j.pmatsci.2008.02.001 es_ES
dc.description.references FEIGELSON, R. S. (1964). Synthesis and Single-Crystal Growth of Rare-Earth Orthophosphates. Journal of the American Ceramic Society, 47(5), 257-258. doi:10.1111/j.1151-2916.1964.tb14409.x es_ES
dc.description.references Mao, H. K., Xu, J., & Bell, P. M. (1986). Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. Journal of Geophysical Research, 91(B5), 4673. doi:10.1029/jb091ib05p04673 es_ES
dc.description.references Fei, Y., Li, J., Hirose, K., Minarik, W., Van Orman, J., Sanloup, C., … Funakoshi, K. (2004). A critical evaluation of pressure scales at high temperatures by in situ X-ray diffraction measurements. Physics of the Earth and Planetary Interiors, 143-144, 515-526. doi:10.1016/j.pepi.2003.09.018 es_ES
dc.description.references Errandonea, D., Muñoz, A., & Gonzalez-Platas, J. (2014). Comment on «High-pressure x-ray diffraction study of YBO3/Eu3+, GdBO3, and EuBO3: Pressure-induced amorphization in GdBO3» [J. Appl. Phys. 115, 043507 (2014)]. Journal of Applied Physics, 115(21), 216101. doi:10.1063/1.4881057 es_ES
dc.description.references Errandonea, D. (2015). Exploring the properties of MTO4compounds using high-pressure powder x-ray diffraction. Crystal Research and Technology, 50(9-10), 729-736. doi:10.1002/crat.201500010 es_ES
dc.description.references Hammersley, A. P., Svensson, S. O., Hanfland, M., Fitch, A. N., & Hausermann, D. (1996). Two-dimensional detector software: From real detector to idealised image or two-theta scan. High Pressure Research, 14(4-6), 235-248. doi:10.1080/08957959608201408 es_ES
dc.description.references Dera, P., Zhuravlev, K., Prakapenka, V., Rivers, M. L., Finkelstein, G. J., Grubor-Urosevic, O., … Downs, R. T. (2013). High pressure single-crystal micro X-ray diffraction analysis with GSE_ADA/RSV software. High Pressure Research, 33(3), 466-484. doi:10.1080/08957959.2013.806504 es_ES
dc.description.references Sheldrick, G. M. (2007). A short history ofSHELX. Acta Crystallographica Section A Foundations of Crystallography, 64(1), 112-122. doi:10.1107/s0108767307043930 es_ES
dc.description.references Hohenberg, P., & Kohn, W. (1964). Inhomogeneous Electron Gas. Physical Review, 136(3B), B864-B871. doi:10.1103/physrev.136.b864 es_ES
dc.description.references Mujica, A., Rubio, A., Muñoz, A., & Needs, R. J. (2003). High-pressure phases of group-IV, III–V, and II–VI compounds. Reviews of Modern Physics, 75(3), 863-912. doi:10.1103/revmodphys.75.863 es_ES
dc.description.references Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set. Physical Review B, 54(16), 11169-11186. doi:10.1103/physrevb.54.11169 es_ES
dc.description.references Blöchl, P. E. (1994). Projector augmented-wave method. Physical Review B, 50(24), 17953-17979. doi:10.1103/physrevb.50.17953 es_ES
dc.description.references Perdew, J. P., Burke, K., & Ernzerhof, M. (1997). Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)]. Physical Review Letters, 78(7), 1396-1396. doi:10.1103/physrevlett.78.1396 es_ES
dc.description.references Chetty, N., Muoz, A., & Martin, R. M. (1989). First-principles calculation of the elastic constants of AlAs. Physical Review B, 40(17), 11934-11936. doi:10.1103/physrevb.40.11934 es_ES
dc.description.references Le Page, Y., & Saxe, P. (2002). Symmetry-general least-squares extraction of elastic data for strained materials fromab initiocalculations of stress. Physical Review B, 65(10). doi:10.1103/physrevb.65.104104 es_ES
dc.description.references Beckstein, O., Klepeis, J. E., Hart, G. L. W., & Pankratov, O. (2001). First-principles elastic constants and electronic structure ofα−Pt2Siand PtSi. Physical Review B, 63(13). doi:10.1103/physrevb.63.134112 es_ES
dc.description.references Parlinski, K., Li, Z. Q., & Kawazoe, Y. (1997). First-Principles Determination of the Soft Mode in CubicZrO2. Physical Review Letters, 78(21), 4063-4066. doi:10.1103/physrevlett.78.4063 es_ES
dc.description.references Errandonea, D., Ferrer-Roca, C., Martínez-Garcia, D., Segura, A., Gomis, O., Muñoz, A., … Sapiña, F. (2010). High-pressure x-ray diffraction andab initiostudy ofNi2Mo3N,Pd2Mo3N,Pt2Mo3N,Co3Mo3N, andFe3Mo3N: Two families of ultra-incompressible bimetallic interstitial nitrides. Physical Review B, 82(17). doi:10.1103/physrevb.82.174105 es_ES
dc.description.references Errandonea, D., Ruiz-Fuertes, J., Sans, J. A., Santamaría-Perez, D., Gomis, O., Gómez, A., & Sapiña, F. (2012). Compressibility and structural stability of ultra-incompressible bimetallic interstitial carbides and nitrides. Physical Review B, 85(14). doi:10.1103/physrevb.85.144103 es_ES
dc.description.references Recio, J. M., Franco, R., Martín Pendás, A., Blanco, M. A., Pueyo, L., & Pandey, R. (2001). Theoretical explanation of the uniform compressibility behavior observed in oxide spinels. Physical Review B, 63(18). doi:10.1103/physrevb.63.184101 es_ES
dc.description.references Momma, K., & Izumi, F. (2011). VESTA 3for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44(6), 1272-1276. doi:10.1107/s0021889811038970 es_ES
dc.description.references Errandonea, D., Muñoz, A., Rodríguez-Hernández, P., Gomis, O., Achary, S. N., Popescu, C., … Tyagi, A. K. (2016). High-Pressure Crystal Structure, Lattice Vibrations, and Band Structure of BiSbO4. Inorganic Chemistry, 55(10), 4958-4969. doi:10.1021/acs.inorgchem.6b00503 es_ES
dc.description.references Wallace, D. C. (1970). Thermoelastic Theory of Stressed Crystals and Higher-Order Elastic Constants. Solid State Physics, 301-404. doi:10.1016/s0081-1947(08)60010-7 es_ES
dc.description.references Wang, J., Yip, S., Phillpot, S. R., & Wolf, D. (1993). Crystal instabilities at finite strain. Physical Review Letters, 71(25), 4182-4185. doi:10.1103/physrevlett.71.4182 es_ES
dc.description.references Wang, J., Li, J., Yip, S., Phillpot, S., & Wolf, D. (1995). Mechanical instabilities of homogeneous crystals. Physical Review B, 52(17), 12627-12635. doi:10.1103/physrevb.52.12627 es_ES
dc.description.references Zhou, Z., & Joós, B. (1996). Stability criteria for homogeneously stressed materials and the calculation of elastic constants. Physical Review B, 54(6), 3841-3850. doi:10.1103/physrevb.54.3841 es_ES
dc.description.references Speziale, S., Jiang, F., Mao, Z., Monteiro, P. J. M., Wenk, H.-R., Duffy, T. S., & Schilling, F. R. (2008). Single-crystal elastic constants of natural ettringite. Cement and Concrete Research, 38(7), 885-889. doi:10.1016/j.cemconres.2008.02.004 es_ES
dc.description.references Farley, J. M., & Saunders, G. A. (1972). Ultrasonic study of the elastic behaviour of calcium tungstate between 1.5 K and 300 K. Journal of Physics C: Solid State Physics, 5(21), 3021-3037. doi:10.1088/0022-3719/5/21/008 es_ES
dc.description.references Ravindran, P., Fast, L., Korzhavyi, P. A., Johansson, B., Wills, J., & Eriksson, O. (1998). Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2. Journal of Applied Physics, 84(9), 4891-4904. doi:10.1063/1.368733 es_ES
dc.description.references Reuss, A. (1929). Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik, 9(1), 49-58. doi:10.1002/zamm.19290090104 es_ES
dc.description.references Hill, R. (1952). The Elastic Behaviour of a Crystalline Aggregate. Proceedings of the Physical Society. Section A, 65(5), 349-354. doi:10.1088/0370-1298/65/5/307 es_ES
dc.description.references Caracas, R., & Boffa Ballaran, T. (2010). Elasticity of (K,Na)AlSi3O8 hollandite from lattice dynamics calculations. Physics of the Earth and Planetary Interiors, 181(1-2), 21-26. doi:10.1016/j.pepi.2010.04.004 es_ES
dc.description.references Gomis, O., Santamaría-Pérez, D., Ruiz-Fuertes, J., Sans, J. A., Vilaplana, R., Ortiz, H. M., … Mollar, M. (2014). High-pressure structural and elastic properties of Tl2O3. Journal of Applied Physics, 116(13), 133521. doi:10.1063/1.4897241 es_ES
dc.description.references Brazhkin, V. V., Lyapin, A. G., & Hemley, R. J. (2002). Harder than diamond: Dreams and reality. Philosophical Magazine A, 82(2), 231-253. doi:10.1080/01418610208239596 es_ES
dc.description.references Greaves, G. N., Greer, A. L., Lakes, R. S., & Rouxel, T. (2011). Poisson’s ratio and modern materials. Nature Materials, 10(11), 823-837. doi:10.1038/nmat3134 es_ES
dc.description.references Pugh, S. F. (1954). XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 45(367), 823-843. doi:10.1080/14786440808520496 es_ES
dc.description.references TVERGAARD, V., & HUTCHINSON, J. W. (1988). Microcracking in Ceramics Induced by Thermal Expansion or Elastic Anisotropy. Journal of the American Ceramic Society, 71(3), 157-166. doi:10.1111/j.1151-2916.1988.tb05022.x es_ES
dc.description.references Ranganathan, S. I., & Ostoja-Starzewski, M. (2008). Universal Elastic Anisotropy Index. Physical Review Letters, 101(5). doi:10.1103/physrevlett.101.055504 es_ES
dc.description.references Tian, Y., Xu, B., & Zhao, Z. (2012). Microscopic theory of hardness and design of novel superhard crystals. International Journal of Refractory Metals and Hard Materials, 33, 93-106. doi:10.1016/j.ijrmhm.2012.02.021 es_ES
dc.description.references Poirier, J.-P. (2000). Introduction to the Physics of the Earth’s Interior. doi:10.1017/cbo9781139164467 es_ES
dc.description.references Anderson, O. L. (1963). A simplified method for calculating the debye temperature from elastic constants. Journal of Physics and Chemistry of Solids, 24(7), 909-917. doi:10.1016/0022-3697(63)90067-2 es_ES
dc.description.references Marmier, A., Lethbridge, Z. A. D., Walton, R. I., Smith, C. W., Parker, S. C., & Evans, K. E. (2010). ElAM: A computer program for the analysis and representation of anisotropic elastic properties. Computer Physics Communications, 181(12), 2102-2115. doi:10.1016/j.cpc.2010.08.033 es_ES
dc.description.references Clarke, D. R. (2003). Materials selection guidelines for low thermal conductivity thermal barrier coatings. Surface and Coatings Technology, 163-164, 67-74. doi:10.1016/s0257-8972(02)00593-5 es_ES
dc.description.references Levi, C. G. (2004). Emerging materials and processes for thermal barrier systems. Current Opinion in Solid State and Materials Science, 8(1), 77-91. doi:10.1016/j.cossms.2004.03.009 es_ES
dc.description.references Hikichi, Y., Ota, T., Daimon, K., Hattori, T., & Mizuno, M. (2005). Thermal, Mechanical, and Chemical Properties of Sintered Xenotime-Type RPO4 (R = Y, Er, Yb, or Lu). Journal of the American Ceramic Society, 81(8), 2216-2218. doi:10.1111/j.1151-2916.1998.tb02613.x es_ES
dc.description.references Wallace, D. C. (1967). Thermoelasticity of Stressed Materials and Comparison of Various Elastic Constants. Physical Review, 162(3), 776-789. doi:10.1103/physrev.162.776 es_ES
dc.description.references Grimvall, G., Magyari-Köpe, B., Ozoliņš, V., & Persson, K. A. (2012). Lattice instabilities in metallic elements. Reviews of Modern Physics, 84(2), 945-986. doi:10.1103/revmodphys.84.945 es_ES
dc.description.references Errandonea, D., Manjón, F. J., Muñoz, A., Rodríguez-Hernández, P., Panchal, V., Achary, S. N., & Tyagi, A. K. (2013). High-pressure polymorphs of TbVO4: A Raman and ab initio study. Journal of Alloys and Compounds, 577, 327-335. doi:10.1016/j.jallcom.2013.06.008 es_ES
dc.description.references Dawson, P., Hargreave, M. M., & Wilkinson, G. R. (1971). The vibrational spectrum of zircon (zrsio4). Journal of Physics C: Solid State Physics, 4(2), 240-256. doi:10.1088/0022-3719/4/2/014 es_ES
dc.description.references Yue, B., Hong, F., Merkel, S., Tan, D., Yan, J., Chen, B., & Mao, H.-K. (2016). Deformation Behavior across the Zircon-Scheelite Phase Transition. Physical Review Letters, 117(13). doi:10.1103/physrevlett.117.135701 es_ES
dc.description.references Errandonea, D., Pellicer-Porres, J., Martínez-García, D., Ruiz-Fuertes, J., Friedrich, A., Morgenroth, W., … Bettinelli, M. (2016). Phase Stability of Lanthanum Orthovanadate at High Pressure. The Journal of Physical Chemistry C, 120(25), 13749-13762. doi:10.1021/acs.jpcc.6b04782 es_ES
dc.description.references Errandonea, D., Gomis, O., Santamaría-Perez, D., García-Domene, B., Muñoz, A., Rodríguez-Hernández, P., … Popescu, C. (2015). Exploring the high-pressure behavior of the three known polymorphs of BiPO4: Discovery of a new polymorph. Journal of Applied Physics, 117(10), 105902. doi:10.1063/1.4914407 es_ES
dc.description.references Gleissner, J., Errandonea, D., Segura, A., Pellicer-Porres, J., Hakeem, M. A., Proctor, J. E., … Bettinelli, M. (2016). Monazite-type SrCrO4 under compression. Physical Review B, 94(13). doi:10.1103/physrevb.94.134108 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem