- -

Calibration of a parsimonious distributed ecohydrological daily model in a data-scarce basin by exclusively using the spatio-temporal variation of NDVI

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Calibration of a parsimonious distributed ecohydrological daily model in a data-scarce basin by exclusively using the spatio-temporal variation of NDVI

Mostrar el registro completo del ítem

Ruiz Perez, G.; Koch, J.; Manfreda, S.; Caylor, KK.; Francés, F. (2017). Calibration of a parsimonious distributed ecohydrological daily model in a data-scarce basin by exclusively using the spatio-temporal variation of NDVI. HYDROLOGY AND EARTH SYSTEM SCIENCES. 21(12):6235-6251. https://doi.org/10.5194/hess-21-6235-2017

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/149645

Ficheros en el ítem

Metadatos del ítem

Título: Calibration of a parsimonious distributed ecohydrological daily model in a data-scarce basin by exclusively using the spatio-temporal variation of NDVI
Autor: Ruiz Perez, Guiomar Koch, J. Manfreda, Salvatore Caylor, Kelly K. Francés, F.
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Fecha difusión:
Resumen:
[EN] Ecohydrological modeling studies in developing countries, such as sub-Saharan Africa, often face the problem of extensive parametrical requirements and limited available data. Satellite remote sensing data may be able ...[+]
Palabras clave: Leaf-Area index , Water-Controlled ecosystems , Radiation-Use efficiency , Gross primary production , Flow duration curves , Soil-Moisture , Vegetation dynamics , Hydrological model , Spatial-Patterns , Satellite data
Derechos de uso: Reconocimiento (by)
Fuente:
HYDROLOGY AND EARTH SYSTEM SCIENCES. (issn: 1027-5606 )
DOI: 10.5194/hess-21-6235-2017
Editorial:
EUROPEAN GEOSCIENCES UNION
Versión del editor: https://doi.org/10.5194/hess-21-6235-2017
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//CGL2014-58127-C3-3-R/ES/MEJORAS BIOGEOQUIMICAS EN EL MODELO TETIS Y SU EXPLOTACION EN EL ANALISIS DEL IMPACTO DEL CAMBIO GLOBAL EN LOS CICLOS DEL AGUA, CALIDAD Y SEDIMENTOS EN CUENCAS MEDITERRANEAS/
info:eu-repo/grantAgreement/MICINN//CGL2011-28776-C02-01/ES/MODELACION ECOHIDROLOGICA DISTRIBUIDA A ESCALA DE CUENCA PARA BOSQUES EN CLIMAS SEMIARIDOS/
info:eu-repo/grantAgreement/MINECO//EEBB-I-15-10262/
Agradecimientos:
The research leading to these results has received funding from the Spanish Ministry of Economy and Competitiveness and FEDER funds, through the research projects ECOTETIS (CGL2011-28776-C02-014) and TETISMED (CGL2014-58 ...[+]
Tipo: Artículo

References

Allen, R. G., Pruitt, W. O., Wright, J. L., Howell, T. A., Ventura, F., Snyder, R., Itenfisu, D., Steduto, P., Berengena, J., Yrisarry, J. B., Smith, M., Pereira, L. S., Raes, D., Perrier, A., Alves, I., Walter, I., Elliott, R.: A recommendation on standardized surface resistance for hourly calculation of reference ET0 by the FAO56 Penman-Monteith method, Agr. Water Manage., 81, 1–22, https://doi.org/10.1016/j.agwat.2005.03.007, 2006.

Andersen, F. H.: Hydrological modeling in a semi-arid area using remote sensing data, Doctoral Thesis, Department of Geography and Geology, University of Copenhagen, Denmark, 2008.

Bjornsson, H. and Venegas, S. A.: A manual for EOF and SVD analyses of climate data, CCGCR Rep. 97-1, McGill University, Montréal, Canada, 52 pp., 1997. [+]
Allen, R. G., Pruitt, W. O., Wright, J. L., Howell, T. A., Ventura, F., Snyder, R., Itenfisu, D., Steduto, P., Berengena, J., Yrisarry, J. B., Smith, M., Pereira, L. S., Raes, D., Perrier, A., Alves, I., Walter, I., Elliott, R.: A recommendation on standardized surface resistance for hourly calculation of reference ET0 by the FAO56 Penman-Monteith method, Agr. Water Manage., 81, 1–22, https://doi.org/10.1016/j.agwat.2005.03.007, 2006.

Andersen, F. H.: Hydrological modeling in a semi-arid area using remote sensing data, Doctoral Thesis, Department of Geography and Geology, University of Copenhagen, Denmark, 2008.

Bjornsson, H. and Venegas, S. A.: A manual for EOF and SVD analyses of climate data, CCGCR Rep. 97-1, McGill University, Montréal, Canada, 52 pp., 1997.

Bonaccorso, B., Bordi, I., Cancelliere, A., Rossi, G., and Sutera, A.: Spatial variability of drought: an analysis of the SPI in Sicily, Water Resour. Manage., 17, 273–296, 2003.

Bond, B. J., Jones, J. A., Moore, G., Phillips, N., Post, D., and McDonnell, J. J.: The zone of vegetation influence on baseflow revealed by diel patterns of streamflow and vegetation water use in a headwater basin, Hydrol. Process., 16, 1671–1677, 2002.

Brown, B. G., Gilleland, E., and Ebert, E. E.: Forecasts of spatial fields, in: Forecast Verification, John Wiley, 95–117, 2011.

Caylor, K. K., D'Odorico P., and Rodriguez-Iturbe I.: On the ecohydrological organization of spatially heterogeneous semi-arid landscapes, Water Resour. Res., 42, W07424, https://doi.org/10.1029/2005WR004683, 2006.

Ceballos, Y. and Ruiz de la Torre, J.: Árboles y arbustos de la España peninsular, ETSI Montes Publications, Madrid, 1979.

Chen, J. M. and Cihlar, J.: Retrieving leaf area index of boreal conifer forests using Landsat TM images, Remote Sens. Environ., 55, 153–162, 1996.

Cheng, L., Yaeger, M., Viglione, A., Coopersmith, E., Ye, S., and Sivapalan, M.: Exploring the physical controls of regional patterns of flow duration curves – Part 1: Insights from statistical analyses, Hydrol. Earth Syst. Sci., 16, 4435–4446, https://doi.org/10.5194/hess-16-4435-2012, 2012.

Cohen, W. B., Maiersperger, T. K., Gower, S. T., and Turner, D. P.: An improved strategy for regression of biophysical variables and Landsat ETM+data, Remote Sens. Environ., 84, 561–571, 2003.

Cohen, J.: Weighted kappa: nominal scale agreement provision for scaled disagreement or partial credit, Psychol. Bull., 70, 213–220, https://doi.org/10.1037/h0026256, 1968.

Conradt, T., Wechsung, F., and Bronstert, A.: Three perceptions of the evapotranspiration landscape: comparing spatial patterns from a distributed hydrological model, remotely sensed surface temperatures, and sub-basin water balances, Hydrol. Earth Syst. Sci., 17, 2947–2966, https://doi.org/10.5194/hess-17-2947-2013, 2013.

Coopersmith, E., Yaeger, M. A., Ye, S., Cheng, L., and Sivapalan, M.: Exploring the physical controls of regional patterns of flow duration curves – Part 3: A catchment classification system based on regime curve indicators, Hydrol. Earth Syst. Sci., 16, 4467–4482, https://doi.org/10.5194/hess-16-4467-2012, 2012.

Drewry, D. T. and Albertson, J. D.: Diagnosing model error in canopy-atmosphere exchange using empirical orthogonal function analysis, Water Resour. Res., 42, W06421, https://doi.org/10.1029/2005WR004496, 2006.

Fang, Z., Bogena, H., Kollet, S., Koch, J., and Vereecken, H.: Spatio-temporal validation of long-term 3D hydrological simulations of a forested catchment using empirical orthogonal functions and wavelet coherence analysis, J. Hydrol., 529, 1754–1767, 2015.

Feyen, L., Kalas, M., and Vrugt, J. A.: Semi-distributed parameter optimization and uncertainty assessment for large-scale stream-flow simulation using global optimization, Hydrolog. Sci. J., 53, 293–308, https://doi.org/10.1623/hysj.53.2.293, 2008.

Francés, F. and Benito, J.: La modelación distribuida con pocos parámetros de las crecidas, Ingeniería del Agua, 2, 7–24, 1995.

Francés, F., Vélez, J. I., and Vélez, J. J.: Split-parameter structure for the automatic calibration of distributed hydrological models, J. Hydrol., 332, 226–240, 2008.

Franssen, H. J. H, Brunner, P., Makobo, P., and Kinzelbach, W.: Equally likely inverse solutions to a groundwater flow problem including pattern information from remote sensing images, Water Resour. Res., 44, W01419, https://doi.org/10.1029/2007WR006097, 2008.

Franz, T. E.: Ecohydrology of the upper Ewaso Ngiro river basin, Kenia, Doctoral Thesis, Princeton University, Princeton, NJ, USA, 2007.

Franz, T. E., Caylor, K. K., Nordbotten, J. M., Rodríguez-Iturbe, I., and Celia, M. A.: An ecohydrological approach to predicting regional woody species distribution patterns in dryland ecosystems, Adv. Water Resour., 33, 215–230, 2010.

Frassnacht, K. S., Gower, S. T., MacKenzie, M. D., Nordheim, E. V., and Lillesand, T. M.: Estimating the leaf area index of north central Wisconsin forests using the Landsat Thematic Mapper, Remote Sens. Environ., 61, 229–245, 1997.

Friedl, M. A., Michaelsen, J., Davis, F. W., Walker, H., and Schimel, D. S.: Estimating grassland biomass and leaf area index using ground and satellite data, Int. J. Remote Sens., 15, 1401–1420, 1994.

Gamon, J. A., Serrano, L., and Surfus, J. S.: The photochemical reflectance index: an optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels, Oecologia, 112, 492–501, 1997.

García-Arias, A. and Francés, F.: The RVDM: modelling impacts, evolution and competition processes to determine riparian vegetation dynamics, Ecohydrology, 9, 438–459, https://doi.org/10.1002/eco.1648, 2016.

Gigante, V., Iacobellis, V., Manfreda, S., Milella, P., and Portoghese, I.: Influences of Leaf Area Index estimations on water balance modeling in a Mediterranean semi-arid basin, Nat. Hazards Earth Syst. Sci., 9, 979–991, https://doi.org/10.5194/nhess-9-979-2009, 2009.

GIMHA team (Vélez, I., Vélez, J., Puricelli, M., Montoya, J. J., Camilo, J. C., Bussi, G., Medici, C., Orozco, I., Ruiz-Pérez, G.): Description of the distributed conceptual hydrological model TETIS v.8, Universitat Politècnica de València, 2014.

Gilleland, E., Ahijevych, D. A., Brown, B. G., and Ebert, E. E.: Verifying forecasts spatially, B. Am. Meteorol. Soc., 91, 1365–1373, 2010.

Graf, A., Bogena, H. R., Drüe, C., Hardelauf, H., Pütz, T., Heinemann, G., and Vereecken, H.: Spatiotemporal relations between water budget components and soil moisture in a forested tributary catchment, Water Resour. Res., 50, 4837–4857, https://doi.org/10.1002/2013WR014516, 2014.

Gribovszki, Z., Kalicz, P., Szilágyi, J., and Kucsara, M.: Riparian zone evapotranspiration estimation from diurnal groundwater level fluctuations, J. Hydrol., 349, 6–17, https://doi.org/10.1016/j.jhydrol.2007.10.049, 2008.

Gutmann, E. D. and Small, E. E.: A method for the determination of the hydraulic properties of soil from MODIS surface temperature for use in land-surface models, Water Resour. Res., 46, W06520, https://doi.org/10.1029/2009WR008203, 2010.

Immerzel, W. and Droogers, P.: Calibration of a distributed hydrological model based on satellite evapotranspiration, J. Hydrol., 349, 411–424, 2008.

Jasechko, S., Sharp, Z. D., Gibson, J. J., Birks, S. J., Yi, Y., and Fawcett, P. J.: Terrestrial water fluxes dominated by transpiration, Nature, 496, 347–350, https://doi.org/10.1038/nature11983, 2013.

Kim, G. and Barros, A. P.: Space-time characterization of soil moisture from passive microwave remotely sensed imagery and ancillary data, Remote Sens.Environ., 81, 393–403, 2002.

Koch, J., Jensen, K. H., and Stisen, S.: Toward a true spatial model evaluation in distributed hydrological modeling: Kappa statistics, Fuzzy theroy, and EOF-analysis benchmarked by the human perception and evaluated against a modeling case study, Water Resour. Res., 51, 1225–1246, https://doi.org/10.1002/2014WR016607, 2015.

Koch, J., Cornelissen, T., Fang, Z., Bogena, H., Diekkrüger, B., Kollet, S., and Stisen, S.: Inter-comparison of three distributed hydrological models with respect to seasonal variability of soil moisture patterns at a small forested catchment, J. Hydrol., 533, 234–249, 2016a.

Koch, J., Siemann, A., Stisen, S., and Sheffield, J.: Spatial validation of large-scale land surface models against monthly land surface temperature patterns using innovative performance metrics, J. Geophys. Res.-Atmos., 121, 5430–5452, https://doi.org/10.1002/2015JD024482, 2016b.

Kunnath-Poovakka, A., Ryu, D., Renzullo, L. J., and George, B.: The efficacy of calibrating hydrologic model using remotely sensed evapotranspiration and soil moisture for streamflow prediction, J. Hydrol., 535, 509–524, 2016.

Landsberg, J. J. and Waring, R. H.: A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partiotioning, Forest Ecol. Manage., 95, 209–228, 1997.

Law, B. E. and Waring, R. H.: Remote sensing of leaf area index and radiation intercepted by understory vegetation, Ecol. Appl., 4, 272–279, 1994.

Le Roux, X., Bariac, T., and Mariotti, A.: Spatial partitioning of the soil water resource between grass and shrub components in a West African humid savanna, Oecologia, 104, 147–155, 1995.

Liu, Y.: Spatial patterns of soil moisture connected to monthly-seasonal precipitation variability in a monsoon region, J. Geophys. Res.-Atmos., 108, 8856, https://doi.org/10.1029/2002JD003124, 2003.

Lo, M. H., Famiglietti, J. S., Yeh, P. J., and Syed, T. H.: Improving parameter estimation and water table depth simulation in a land surface model using GRACE water storage and estimated base flow data, Water Resour. Res., 46, W05517, https://doi.org/10.1029/2009WR007855, 2010.

López-Serrano, F. R., Landete-Castillejos, T., Martínez-Millán, J., and Cerro-Barja, A.: LAI estimation of natural pine forest using a non-standard sampling technique, Agr. Forest Meteorol., 101, 95–111, https://doi.org/10.1016/S0168-1923(99)00171-9, 2000.

Manfreda, S. and Caylor, K. K.: On The Vulnerability of Water Limited Ecosystems to Climate Change, Water, 5, 819–833, 2013.

Manfreda, S., Pizzolla, T., and Caylor, K. K.: Modelling vegetation patterns in semiarid environments, Procedia Environ. Sci., 19, 168–177, 2013.

Manfreda, S., Fiorentino, M., and Iacobellis, V.: DREAM: a distributed model for runoff, evapotranspiration, and antecedent soil moisture simulation, Adv. Geosci., 2, 31–39, https://doi.org/10.5194/adgeo-2-31-2005, 2005.

McCabe, M. F., Wood, E. F., Wojcik, R., Pan, M., Sheffield, J., Gao, H., and Su, H.: Hydrological consistency using multi-sensor remote sensing data for water and energy cycle studies, Remote Sens. Environ., 112, 430–444, 2008.

Medlyn, B. E.: Physiological basis of the light use efficiency model, Tree Physiol., 18, 167–176, 1998.

Merz, R., Parajka, J., and Bloschl, G.: Scale effects in conceptual hydrological modeling, Water Resour. Res., 45, W09405, https://doi.org/10.1029/2009WR007872, 2009.

Michaud, J. and Sorooshian, S.: Comparison of simple versus complex distributed runoff models on a midsized semiarid watershed, Water Resour. Res., 30, 593–605, 1994.

Montaldo, N., Rondena, R., Albertson, J. D., and Mancini, M.: Parsimonious modeling of vegetation dynamics for ecohydrologic studies of water limited ecosystems, Water Resour. Res., 41, W10416, https://doi.org/10.1029/2005WR004094, 2005.

Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual models part I – A discussion of principles, J. Hydrol., 10, 282–290, 1970.

Nyholm, T., Rasmussen, K. R., and Christensen, S.: Estimation of stream flow depletion and uncertainty from discharge measurements in a small alluvial stream, J. Hydrol., 274, 129–144, 2003.

Ollinger, S. V., Richardson, A. D., Martin, M. E., Hollinger, D. Y., Frolking, S., Reich, P. B., Plourde, L. C., Katul, G., Munger, J. W., Oren, R., Smith, M. L., Paw, U., Bolstad, K. T., Cook, P. V., Day, B., Martin, M. C., Monson, T. A., and Schmidt, R. K. H. P.: Canopynitrogen, carbon assimilation, and albedo in temperate and boreal forests: functional relations and potential climate feedbacks, P. Natl. Acad. Sci. USA, 105, 19335–19340, 2008.

Pasquato, M., Medici, M., Friend, A. D., and Francés, F.: Comparing two approaches for parsimonious vegetation modelling in semiarid regions using satellite data, Ecohydrology, 8, 1024–1036, https://doi.org/10.1002/eco.1559, 2015.

Porporato, A., Laio, F., Ridolfi, L., and Rodriguez-Iturbe, I.: Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress: III. Vegetation water stress, Adv. Water Resour., 24, 725–744, 2001.

Pumo, D., Noto, L. V., and Viola, F.: Ecohydrological modelling of flow duration curve in Mediterranean river basins, Adv. Water Resour., 52, 314–327, 2013.

Preisendorfer, R. W. and Mobbley, C. D.: Principal component analysis in meteorology and oceanography, Vol. 425, Amsterdam, Elsevier, 1988.

Quevedo, D. I. and Francés, F.: A conceptual dynamic vegetation-soil model for arid and semiarid zones, Hydrol. Earth Syst. Sci., 12, 1175–1187, https://doi.org/10.5194/hess-12-1175-2008, 2008.

Rientjes, T. H. M., Muthuwatta, L. P., Bos, M. G., Booij, M. J., and Bhatti, H. A.: Multi-variable calibration of a semi-distributed hydrological model using streamflow data and satellite-based evapotranspiration, J. Hydrol., 505, 276–290, 2013.

Reed, S., Koren, V., Smith, M., Zhang, Z., Moreda, F., Seo, D.-J., and DMIP participants: Overall distributed model inter-comparison project results, J. Hydrol., 298, 27–60, 2004.

Rodriguez-Iturbe, I., Porporato, A., Laio, F., and Ridolfi, L.: Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress, I. Scope and general outline, Adv. Water Resour., 24, 695–705, 2001.

Ruiz-Pérez, G., González-Sanchis, M., Del Campo, A. D., and Francés, F.: Can a parsimonious model implemented with satellite data be used for modelling the vegetation dynamics and water cycle in water-controlled environments?, Ecol. Model., 324, 45–53, 2016.

Samaniego, L., Kumar, R., and Jackisch, C.: Predictions in a data-sparse region using a regionalized grid-based hydrologic model driven by remotely sensed data, Hydrol. Res., 42, 338–355, https://doi.org/10.2166/nh.2011.156, 2011.

Sims, D. A., Luo, H., Hastings, S., Oechel, W. C., Rahman, A. F., and Gamon, J. A.: Parallel adjustments in vegetation greenness and ecosystem CO2 exchange in response to drought in a Southern California chaparral ecosystem, Remote Sens. Environ., 103, 289–303, 2006.

Smith, M. B., Koren, V., Reed, S., Zhang, Z., Zhang, Y., Moreda, F., Cui, Z., Mizukami, N., Anderson, E. A., and Cosgrove, B. A.: The distributed model intercomparison project – Phase 2: Motivation and design of the Oklahoma experiments, J. Hydrol., 418–419, 3–16, https://doi.org/10.1016/j.jhydrol.2011.08.055, 2012.

Smith, M. B., Koren, V., Zhang, Z., et al.: The Distributed Model Intercomparison project – Phase 2: Experiment design and summary results of the western basin experiments, J. Hydrol., 207, 300–329, https://doi.org/10.1016/j.jhydrol.2013.08.040, 2013.

Stisen, S., McCabe, M. F., Refsgaard, J. C., Lerer, S., and Butts, M. B.: Model parameter analysis using remotely sensed pattern information in a multi-constraint framework, J. Hydrol., 409, 337–349, 2011.

Tsang, Y. P., Hornberger, G., Kaplan, L. A., Newbold, J. D., and Aufdenkampe, A. K.: A variable source area for groundwater evapotranspiration: Impacts on modeling stream flow, Hydrol. Proc., 28, 2439–2450, 2014.

Turner, D. P., Cohen, W. B., Kennedy, R. E., Fassnacht, K. S., and Briggs, J. M.: Relationships between leaf area index and Landsat TM spectral vegetation indices across three temperate zone sites, Remote Sens. Environ., 70, 52–68, 1999.

van Dijk, A. I. J. M. and Renzullo, L. J.: Water resource monitoring systems and the role of satellite observations, Hydrol. Earth Syst. Sci., 15, 39–55, https://doi.org/10.5194/hess-15-39-2011, 2011.

Velpuri, N. M., Senay, G. B., and Asante, K. O.: A multi-source satellite data approach for modelling Lake Turkana water level: calibration and validation using satellite altimetry data, Hydrol. Earth Syst. Sci., 16, 1–18, https://doi.org/10.5194/hess-16-1-2012, 2012.

Wagener, T., Blöschl, G., Goodrich, D. C., Gupta, H., Sivapalan, M., Tachikawa, Y., and Weiler, M.: A synthesis framework for runoff prediction in ungauged basins, chap., 2, 11–28, 2013.

Wi, S., Yang, Y. C. E., Steinschneider, S., Khalil, A., and Brown, C. M.: Calibration approaches for distributed hydrologic models in poorly gaged basins: implication for streamflow projections under climate change, Hydrol. Earth Syst. Sci., 19, 857–876, https://doi.org/10.5194/hess-19-857-2015, 2015.

Winsemius, H. C., Savenije, H. H. G., and Bastiaanssen, W. G. M.: Constraining model parameters on remotely sensed evaporation: justification for distribution in ungauged basins?, Hydrol. Earth Syst. Sci., 12, 1403–1413, https://doi.org/10.5194/hess-12-1403-2008, 2008.

Xiao, X., Zhang, Q., Braswell, B., Urbanski, S., Boles, S., Wofsy, S., Moore, B., and Ojima, D.: Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data, Remote Sens. Environ., 91, 256–270, 2004.

Yang, Y., Shang, S., and Jiang, L.: Remote sensing temporal and spatial patterns of evapotranspiration and the responses to water management in a large irrigation district of North China, Agr. Forest Meteorol., 164, 112–122, 2012.

Yuan, W., Liu, S., Zhou, G., Zhou, G., Tieszen, L. L., Baldocchi, D., Bernhofer, C., Gholz, H., Goldstein, A. H., Goulden, M. L., Hollinger, D. Y., Hu, Y., Law, B. E., Stoy, P. C., Vesala, T., and Wofsy, S. C.: Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes, Agr. Forest Meteorol., 143, 189–207, https://doi.org/10.1016/j.agrformet.2006.12.001, 2007.

Yuan, W., Liu, S., Yu, G., Bonnefond, J.-M., Chen, J., Davis, K., Desai, A. R., Goldstein, A. H., Gianelle, D., Rossi, F., Suyker, A. E., and Verma, S. B.: Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data, Remote Sens. Environ., 114, 1416–1431, 2010.

Zhang, Y. Q., Francis, H. S., Chiew, H. S., Zhang, L., and Li, H.: Use of remotely sensed actual evapotranspiration to improve rainfall-runoff modeling in southeast Australia, Am. Meteorol. Soc., 10, 969–980, 2009.

Zhang, Y. Q., Viney, N. R., Chiew, F. H. S., van Dijk, A. I. J. M., and Liu Y. Y.: Improving hydrological and vegetation modelling using regional model calibration schemes together with remote sensing data, 19th International Congress on Modelling and Simulation, Perth, Australia, 12–16 December, 2011.

Zhang, Y., Peña-Arancibia, J. L., McVicar, T. R., Chiew, F. H., Vaze, J., Liu, C., Lu, X., Zheng H., Wang, Y., Liu, Y., and Miralles, D. G.: Multi-decadal trends in global terrestrial evapotranspiration and its components, Sci. Rep.-UK, 6, 19124, https://doi.org/10.1038/srep19124, 2016.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem