- -

Calibration of a parsimonious distributed ecohydrological daily model in a data-scarce basin by exclusively using the spatio-temporal variation of NDVI

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Calibration of a parsimonious distributed ecohydrological daily model in a data-scarce basin by exclusively using the spatio-temporal variation of NDVI

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ruiz Perez, Guiomar es_ES
dc.contributor.author Koch, J. es_ES
dc.contributor.author Manfreda, Salvatore es_ES
dc.contributor.author Caylor, Kelly K. es_ES
dc.contributor.author Francés, F. es_ES
dc.date.accessioned 2020-09-09T03:31:45Z
dc.date.available 2020-09-09T03:31:45Z
dc.date.issued 2017-12-08 es_ES
dc.identifier.issn 1027-5606 es_ES
dc.identifier.uri http://hdl.handle.net/10251/149645
dc.description.abstract [EN] Ecohydrological modeling studies in developing countries, such as sub-Saharan Africa, often face the problem of extensive parametrical requirements and limited available data. Satellite remote sensing data may be able to fill this gap, but require novel methodologies to exploit their spatiotemporal information that could potentially be incorporated into model calibration and validation frameworks. The present study tackles this problem by suggesting an automatic calibration procedure, based on the empirical orthogonal function, for distributed ecohydrological daily models. The procedure is tested with the support of remote sensing data in a data-scarce environment-the upper Ewaso Ngiro river basin in Kenya. In the present application, the TETIS-VEG model is calibrated using only NDVI (Normalized Difference Vegetation Index) data derived from MODIS. The results demonstrate that (1) satellite data of vegetation dynamics can be used to calibrate and validate ecohydrological models in water-controlled and datascarce regions, (2) the model calibrated using only satellite data is able to reproduce both the spatio-temporal vegetation dynamics and the observed discharge at the outlet and (3) the proposed automatic calibration methodology works satisfactorily and it allows for a straightforward incorporation of spatio-temporal data into the calibration and validation framework of a model. es_ES
dc.description.sponsorship The research leading to these results has received funding from the Spanish Ministry of Economy and Competitiveness and FEDER funds, through the research projects ECOTETIS (CGL2011-28776-C02-014) and TETISMED (CGL2014-58127-C3-3-R). The collaboration between Universitat Politecnica de Valencia, Universita degli studi della Basilicata and Princeton University was funded by the Spanish Ministry of Economy and Competitiveness through the EEBB-I-15-10262 fellowship. es_ES
dc.language Inglés es_ES
dc.publisher EUROPEAN GEOSCIENCES UNION es_ES
dc.relation.ispartof HYDROLOGY AND EARTH SYSTEM SCIENCES es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Leaf-Area index es_ES
dc.subject Water-Controlled ecosystems es_ES
dc.subject Radiation-Use efficiency es_ES
dc.subject Gross primary production es_ES
dc.subject Flow duration curves es_ES
dc.subject Soil-Moisture es_ES
dc.subject Vegetation dynamics es_ES
dc.subject Hydrological model es_ES
dc.subject Spatial-Patterns es_ES
dc.subject Satellite data es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title Calibration of a parsimonious distributed ecohydrological daily model in a data-scarce basin by exclusively using the spatio-temporal variation of NDVI es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.5194/hess-21-6235-2017 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CGL2014-58127-C3-3-R/ES/MEJORAS BIOGEOQUIMICAS EN EL MODELO TETIS Y SU EXPLOTACION EN EL ANALISIS DEL IMPACTO DEL CAMBIO GLOBAL EN LOS CICLOS DEL AGUA, CALIDAD Y SEDIMENTOS EN CUENCAS MEDITERRANEAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CGL2011-28776-C02-01/ES/MODELACION ECOHIDROLOGICA DISTRIBUIDA A ESCALA DE CUENCA PARA BOSQUES EN CLIMAS SEMIARIDOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//EEBB-I-15-10262/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Ruiz Perez, G.; Koch, J.; Manfreda, S.; Caylor, KK.; Francés, F. (2017). Calibration of a parsimonious distributed ecohydrological daily model in a data-scarce basin by exclusively using the spatio-temporal variation of NDVI. HYDROLOGY AND EARTH SYSTEM SCIENCES. 21(12):6235-6251. https://doi.org/10.5194/hess-21-6235-2017 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.5194/hess-21-6235-2017 es_ES
dc.description.upvformatpinicio 6235 es_ES
dc.description.upvformatpfin 6251 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.description.issue 12 es_ES
dc.relation.pasarela S\359205 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Allen, R. G., Pruitt, W. O., Wright, J. L., Howell, T. A., Ventura, F., Snyder, R., Itenfisu, D., Steduto, P., Berengena, J., Yrisarry, J. B., Smith, M., Pereira, L. S., Raes, D., Perrier, A., Alves, I., Walter, I., Elliott, R.: A recommendation on standardized surface resistance for hourly calculation of reference ET0 by the FAO56 Penman-Monteith method, Agr. Water Manage., 81, 1–22, https://doi.org/10.1016/j.agwat.2005.03.007, 2006. es_ES
dc.description.references Andersen, F. H.: Hydrological modeling in a semi-arid area using remote sensing data, Doctoral Thesis, Department of Geography and Geology, University of Copenhagen, Denmark, 2008. es_ES
dc.description.references Bjornsson, H. and Venegas, S. A.: A manual for EOF and SVD analyses of climate data, CCGCR Rep. 97-1, McGill University, Montréal, Canada, 52 pp., 1997. es_ES
dc.description.references Bonaccorso, B., Bordi, I., Cancelliere, A., Rossi, G., and Sutera, A.: Spatial variability of drought: an analysis of the SPI in Sicily, Water Resour. Manage., 17, 273–296, 2003. es_ES
dc.description.references Bond, B. J., Jones, J. A., Moore, G., Phillips, N., Post, D., and McDonnell, J. J.: The zone of vegetation influence on baseflow revealed by diel patterns of streamflow and vegetation water use in a headwater basin, Hydrol. Process., 16, 1671–1677, 2002. es_ES
dc.description.references Brown, B. G., Gilleland, E., and Ebert, E. E.: Forecasts of spatial fields, in: Forecast Verification, John Wiley, 95–117, 2011. es_ES
dc.description.references Caylor, K. K., D'Odorico P., and Rodriguez-Iturbe I.: On the ecohydrological organization of spatially heterogeneous semi-arid landscapes, Water Resour. Res., 42, W07424, https://doi.org/10.1029/2005WR004683, 2006. es_ES
dc.description.references Ceballos, Y. and Ruiz de la Torre, J.: Árboles y arbustos de la España peninsular, ETSI Montes Publications, Madrid, 1979. es_ES
dc.description.references Chen, J. M. and Cihlar, J.: Retrieving leaf area index of boreal conifer forests using Landsat TM images, Remote Sens. Environ., 55, 153–162, 1996. es_ES
dc.description.references Cheng, L., Yaeger, M., Viglione, A., Coopersmith, E., Ye, S., and Sivapalan, M.: Exploring the physical controls of regional patterns of flow duration curves – Part 1: Insights from statistical analyses, Hydrol. Earth Syst. Sci., 16, 4435–4446, https://doi.org/10.5194/hess-16-4435-2012, 2012. es_ES
dc.description.references Cohen, W. B., Maiersperger, T. K., Gower, S. T., and Turner, D. P.: An improved strategy for regression of biophysical variables and Landsat ETM+data, Remote Sens. Environ., 84, 561–571, 2003. es_ES
dc.description.references Cohen, J.: Weighted kappa: nominal scale agreement provision for scaled disagreement or partial credit, Psychol. Bull., 70, 213–220, https://doi.org/10.1037/h0026256, 1968. es_ES
dc.description.references Conradt, T., Wechsung, F., and Bronstert, A.: Three perceptions of the evapotranspiration landscape: comparing spatial patterns from a distributed hydrological model, remotely sensed surface temperatures, and sub-basin water balances, Hydrol. Earth Syst. Sci., 17, 2947–2966, https://doi.org/10.5194/hess-17-2947-2013, 2013. es_ES
dc.description.references Coopersmith, E., Yaeger, M. A., Ye, S., Cheng, L., and Sivapalan, M.: Exploring the physical controls of regional patterns of flow duration curves – Part 3: A catchment classification system based on regime curve indicators, Hydrol. Earth Syst. Sci., 16, 4467–4482, https://doi.org/10.5194/hess-16-4467-2012, 2012. es_ES
dc.description.references Drewry, D. T. and Albertson, J. D.: Diagnosing model error in canopy-atmosphere exchange using empirical orthogonal function analysis, Water Resour. Res., 42, W06421, https://doi.org/10.1029/2005WR004496, 2006. es_ES
dc.description.references Fang, Z., Bogena, H., Kollet, S., Koch, J., and Vereecken, H.: Spatio-temporal validation of long-term 3D hydrological simulations of a forested catchment using empirical orthogonal functions and wavelet coherence analysis, J. Hydrol., 529, 1754–1767, 2015. es_ES
dc.description.references Feyen, L., Kalas, M., and Vrugt, J. A.: Semi-distributed parameter optimization and uncertainty assessment for large-scale stream-flow simulation using global optimization, Hydrolog. Sci. J., 53, 293–308, https://doi.org/10.1623/hysj.53.2.293, 2008. es_ES
dc.description.references Francés, F. and Benito, J.: La modelación distribuida con pocos parámetros de las crecidas, Ingeniería del Agua, 2, 7–24, 1995. es_ES
dc.description.references Francés, F., Vélez, J. I., and Vélez, J. J.: Split-parameter structure for the automatic calibration of distributed hydrological models, J. Hydrol., 332, 226–240, 2008. es_ES
dc.description.references Franssen, H. J. H, Brunner, P., Makobo, P., and Kinzelbach, W.: Equally likely inverse solutions to a groundwater flow problem including pattern information from remote sensing images, Water Resour. Res., 44, W01419, https://doi.org/10.1029/2007WR006097, 2008. es_ES
dc.description.references Franz, T. E.: Ecohydrology of the upper Ewaso Ngiro river basin, Kenia, Doctoral Thesis, Princeton University, Princeton, NJ, USA, 2007. es_ES
dc.description.references Franz, T. E., Caylor, K. K., Nordbotten, J. M., Rodríguez-Iturbe, I., and Celia, M. A.: An ecohydrological approach to predicting regional woody species distribution patterns in dryland ecosystems, Adv. Water Resour., 33, 215–230, 2010. es_ES
dc.description.references Frassnacht, K. S., Gower, S. T., MacKenzie, M. D., Nordheim, E. V., and Lillesand, T. M.: Estimating the leaf area index of north central Wisconsin forests using the Landsat Thematic Mapper, Remote Sens. Environ., 61, 229–245, 1997. es_ES
dc.description.references Friedl, M. A., Michaelsen, J., Davis, F. W., Walker, H., and Schimel, D. S.: Estimating grassland biomass and leaf area index using ground and satellite data, Int. J. Remote Sens., 15, 1401–1420, 1994. es_ES
dc.description.references Gamon, J. A., Serrano, L., and Surfus, J. S.: The photochemical reflectance index: an optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels, Oecologia, 112, 492–501, 1997. es_ES
dc.description.references García-Arias, A. and Francés, F.: The RVDM: modelling impacts, evolution and competition processes to determine riparian vegetation dynamics, Ecohydrology, 9, 438–459, https://doi.org/10.1002/eco.1648, 2016. es_ES
dc.description.references Gigante, V., Iacobellis, V., Manfreda, S., Milella, P., and Portoghese, I.: Influences of Leaf Area Index estimations on water balance modeling in a Mediterranean semi-arid basin, Nat. Hazards Earth Syst. Sci., 9, 979–991, https://doi.org/10.5194/nhess-9-979-2009, 2009. es_ES
dc.description.references GIMHA team (Vélez, I., Vélez, J., Puricelli, M., Montoya, J. J., Camilo, J. C., Bussi, G., Medici, C., Orozco, I., Ruiz-Pérez, G.): Description of the distributed conceptual hydrological model TETIS v.8, Universitat Politècnica de València, 2014. es_ES
dc.description.references Gilleland, E., Ahijevych, D. A., Brown, B. G., and Ebert, E. E.: Verifying forecasts spatially, B. Am. Meteorol. Soc., 91, 1365–1373, 2010. es_ES
dc.description.references Graf, A., Bogena, H. R., Drüe, C., Hardelauf, H., Pütz, T., Heinemann, G., and Vereecken, H.: Spatiotemporal relations between water budget components and soil moisture in a forested tributary catchment, Water Resour. Res., 50, 4837–4857, https://doi.org/10.1002/2013WR014516, 2014. es_ES
dc.description.references Gribovszki, Z., Kalicz, P., Szilágyi, J., and Kucsara, M.: Riparian zone evapotranspiration estimation from diurnal groundwater level fluctuations, J. Hydrol., 349, 6–17, https://doi.org/10.1016/j.jhydrol.2007.10.049, 2008. es_ES
dc.description.references Gutmann, E. D. and Small, E. E.: A method for the determination of the hydraulic properties of soil from MODIS surface temperature for use in land-surface models, Water Resour. Res., 46, W06520, https://doi.org/10.1029/2009WR008203, 2010. es_ES
dc.description.references Immerzel, W. and Droogers, P.: Calibration of a distributed hydrological model based on satellite evapotranspiration, J. Hydrol., 349, 411–424, 2008. es_ES
dc.description.references Jasechko, S., Sharp, Z. D., Gibson, J. J., Birks, S. J., Yi, Y., and Fawcett, P. J.: Terrestrial water fluxes dominated by transpiration, Nature, 496, 347–350, https://doi.org/10.1038/nature11983, 2013. es_ES
dc.description.references Kim, G. and Barros, A. P.: Space-time characterization of soil moisture from passive microwave remotely sensed imagery and ancillary data, Remote Sens.Environ., 81, 393–403, 2002. es_ES
dc.description.references Koch, J., Jensen, K. H., and Stisen, S.: Toward a true spatial model evaluation in distributed hydrological modeling: Kappa statistics, Fuzzy theroy, and EOF-analysis benchmarked by the human perception and evaluated against a modeling case study, Water Resour. Res., 51, 1225–1246, https://doi.org/10.1002/2014WR016607, 2015. es_ES
dc.description.references Koch, J., Cornelissen, T., Fang, Z., Bogena, H., Diekkrüger, B., Kollet, S., and Stisen, S.: Inter-comparison of three distributed hydrological models with respect to seasonal variability of soil moisture patterns at a small forested catchment, J. Hydrol., 533, 234–249, 2016a. es_ES
dc.description.references Koch, J., Siemann, A., Stisen, S., and Sheffield, J.: Spatial validation of large-scale land surface models against monthly land surface temperature patterns using innovative performance metrics, J. Geophys. Res.-Atmos., 121, 5430–5452, https://doi.org/10.1002/2015JD024482, 2016b. es_ES
dc.description.references Kunnath-Poovakka, A., Ryu, D., Renzullo, L. J., and George, B.: The efficacy of calibrating hydrologic model using remotely sensed evapotranspiration and soil moisture for streamflow prediction, J. Hydrol., 535, 509–524, 2016. es_ES
dc.description.references Landsberg, J. J. and Waring, R. H.: A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partiotioning, Forest Ecol. Manage., 95, 209–228, 1997. es_ES
dc.description.references Law, B. E. and Waring, R. H.: Remote sensing of leaf area index and radiation intercepted by understory vegetation, Ecol. Appl., 4, 272–279, 1994. es_ES
dc.description.references Le Roux, X., Bariac, T., and Mariotti, A.: Spatial partitioning of the soil water resource between grass and shrub components in a West African humid savanna, Oecologia, 104, 147–155, 1995. es_ES
dc.description.references Liu, Y.: Spatial patterns of soil moisture connected to monthly-seasonal precipitation variability in a monsoon region, J. Geophys. Res.-Atmos., 108, 8856, https://doi.org/10.1029/2002JD003124, 2003. es_ES
dc.description.references Lo, M. H., Famiglietti, J. S., Yeh, P. J., and Syed, T. H.: Improving parameter estimation and water table depth simulation in a land surface model using GRACE water storage and estimated base flow data, Water Resour. Res., 46, W05517, https://doi.org/10.1029/2009WR007855, 2010. es_ES
dc.description.references López-Serrano, F. R., Landete-Castillejos, T., Martínez-Millán, J., and Cerro-Barja, A.: LAI estimation of natural pine forest using a non-standard sampling technique, Agr. Forest Meteorol., 101, 95–111, https://doi.org/10.1016/S0168-1923(99)00171-9, 2000. es_ES
dc.description.references Manfreda, S. and Caylor, K. K.: On The Vulnerability of Water Limited Ecosystems to Climate Change, Water, 5, 819–833, 2013. es_ES
dc.description.references Manfreda, S., Pizzolla, T., and Caylor, K. K.: Modelling vegetation patterns in semiarid environments, Procedia Environ. Sci., 19, 168–177, 2013. es_ES
dc.description.references Manfreda, S., Fiorentino, M., and Iacobellis, V.: DREAM: a distributed model for runoff, evapotranspiration, and antecedent soil moisture simulation, Adv. Geosci., 2, 31–39, https://doi.org/10.5194/adgeo-2-31-2005, 2005. es_ES
dc.description.references McCabe, M. F., Wood, E. F., Wojcik, R., Pan, M., Sheffield, J., Gao, H., and Su, H.: Hydrological consistency using multi-sensor remote sensing data for water and energy cycle studies, Remote Sens. Environ., 112, 430–444, 2008. es_ES
dc.description.references Medlyn, B. E.: Physiological basis of the light use efficiency model, Tree Physiol., 18, 167–176, 1998. es_ES
dc.description.references Merz, R., Parajka, J., and Bloschl, G.: Scale effects in conceptual hydrological modeling, Water Resour. Res., 45, W09405, https://doi.org/10.1029/2009WR007872, 2009. es_ES
dc.description.references Michaud, J. and Sorooshian, S.: Comparison of simple versus complex distributed runoff models on a midsized semiarid watershed, Water Resour. Res., 30, 593–605, 1994. es_ES
dc.description.references Montaldo, N., Rondena, R., Albertson, J. D., and Mancini, M.: Parsimonious modeling of vegetation dynamics for ecohydrologic studies of water limited ecosystems, Water Resour. Res., 41, W10416, https://doi.org/10.1029/2005WR004094, 2005. es_ES
dc.description.references Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual models part I – A discussion of principles, J. Hydrol., 10, 282–290, 1970. es_ES
dc.description.references Nyholm, T., Rasmussen, K. R., and Christensen, S.: Estimation of stream flow depletion and uncertainty from discharge measurements in a small alluvial stream, J. Hydrol., 274, 129–144, 2003. es_ES
dc.description.references Ollinger, S. V., Richardson, A. D., Martin, M. E., Hollinger, D. Y., Frolking, S., Reich, P. B., Plourde, L. C., Katul, G., Munger, J. W., Oren, R., Smith, M. L., Paw, U., Bolstad, K. T., Cook, P. V., Day, B., Martin, M. C., Monson, T. A., and Schmidt, R. K. H. P.: Canopynitrogen, carbon assimilation, and albedo in temperate and boreal forests: functional relations and potential climate feedbacks, P. Natl. Acad. Sci. USA, 105, 19335–19340, 2008. es_ES
dc.description.references Pasquato, M., Medici, M., Friend, A. D., and Francés, F.: Comparing two approaches for parsimonious vegetation modelling in semiarid regions using satellite data, Ecohydrology, 8, 1024–1036, https://doi.org/10.1002/eco.1559, 2015. es_ES
dc.description.references Porporato, A., Laio, F., Ridolfi, L., and Rodriguez-Iturbe, I.: Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress: III. Vegetation water stress, Adv. Water Resour., 24, 725–744, 2001. es_ES
dc.description.references Pumo, D., Noto, L. V., and Viola, F.: Ecohydrological modelling of flow duration curve in Mediterranean river basins, Adv. Water Resour., 52, 314–327, 2013. es_ES
dc.description.references Preisendorfer, R. W. and Mobbley, C. D.: Principal component analysis in meteorology and oceanography, Vol. 425, Amsterdam, Elsevier, 1988. es_ES
dc.description.references Quevedo, D. I. and Francés, F.: A conceptual dynamic vegetation-soil model for arid and semiarid zones, Hydrol. Earth Syst. Sci., 12, 1175–1187, https://doi.org/10.5194/hess-12-1175-2008, 2008. es_ES
dc.description.references Rientjes, T. H. M., Muthuwatta, L. P., Bos, M. G., Booij, M. J., and Bhatti, H. A.: Multi-variable calibration of a semi-distributed hydrological model using streamflow data and satellite-based evapotranspiration, J. Hydrol., 505, 276–290, 2013. es_ES
dc.description.references Reed, S., Koren, V., Smith, M., Zhang, Z., Moreda, F., Seo, D.-J., and DMIP participants: Overall distributed model inter-comparison project results, J. Hydrol., 298, 27–60, 2004. es_ES
dc.description.references Rodriguez-Iturbe, I., Porporato, A., Laio, F., and Ridolfi, L.: Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress, I. Scope and general outline, Adv. Water Resour., 24, 695–705, 2001. es_ES
dc.description.references Ruiz-Pérez, G., González-Sanchis, M., Del Campo, A. D., and Francés, F.: Can a parsimonious model implemented with satellite data be used for modelling the vegetation dynamics and water cycle in water-controlled environments?, Ecol. Model., 324, 45–53, 2016. es_ES
dc.description.references Samaniego, L., Kumar, R., and Jackisch, C.: Predictions in a data-sparse region using a regionalized grid-based hydrologic model driven by remotely sensed data, Hydrol. Res., 42, 338–355, https://doi.org/10.2166/nh.2011.156, 2011. es_ES
dc.description.references Sims, D. A., Luo, H., Hastings, S., Oechel, W. C., Rahman, A. F., and Gamon, J. A.: Parallel adjustments in vegetation greenness and ecosystem CO2 exchange in response to drought in a Southern California chaparral ecosystem, Remote Sens. Environ., 103, 289–303, 2006. es_ES
dc.description.references Smith, M. B., Koren, V., Reed, S., Zhang, Z., Zhang, Y., Moreda, F., Cui, Z., Mizukami, N., Anderson, E. A., and Cosgrove, B. A.: The distributed model intercomparison project – Phase 2: Motivation and design of the Oklahoma experiments, J. Hydrol., 418–419, 3–16, https://doi.org/10.1016/j.jhydrol.2011.08.055, 2012. es_ES
dc.description.references Smith, M. B., Koren, V., Zhang, Z., et al.: The Distributed Model Intercomparison project – Phase 2: Experiment design and summary results of the western basin experiments, J. Hydrol., 207, 300–329, https://doi.org/10.1016/j.jhydrol.2013.08.040, 2013. es_ES
dc.description.references Stisen, S., McCabe, M. F., Refsgaard, J. C., Lerer, S., and Butts, M. B.: Model parameter analysis using remotely sensed pattern information in a multi-constraint framework, J. Hydrol., 409, 337–349, 2011. es_ES
dc.description.references Tsang, Y. P., Hornberger, G., Kaplan, L. A., Newbold, J. D., and Aufdenkampe, A. K.: A variable source area for groundwater evapotranspiration: Impacts on modeling stream flow, Hydrol. Proc., 28, 2439–2450, 2014. es_ES
dc.description.references Turner, D. P., Cohen, W. B., Kennedy, R. E., Fassnacht, K. S., and Briggs, J. M.: Relationships between leaf area index and Landsat TM spectral vegetation indices across three temperate zone sites, Remote Sens. Environ., 70, 52–68, 1999. es_ES
dc.description.references van Dijk, A. I. J. M. and Renzullo, L. J.: Water resource monitoring systems and the role of satellite observations, Hydrol. Earth Syst. Sci., 15, 39–55, https://doi.org/10.5194/hess-15-39-2011, 2011. es_ES
dc.description.references Velpuri, N. M., Senay, G. B., and Asante, K. O.: A multi-source satellite data approach for modelling Lake Turkana water level: calibration and validation using satellite altimetry data, Hydrol. Earth Syst. Sci., 16, 1–18, https://doi.org/10.5194/hess-16-1-2012, 2012. es_ES
dc.description.references Wagener, T., Blöschl, G., Goodrich, D. C., Gupta, H., Sivapalan, M., Tachikawa, Y., and Weiler, M.: A synthesis framework for runoff prediction in ungauged basins, chap., 2, 11–28, 2013. es_ES
dc.description.references Wi, S., Yang, Y. C. E., Steinschneider, S., Khalil, A., and Brown, C. M.: Calibration approaches for distributed hydrologic models in poorly gaged basins: implication for streamflow projections under climate change, Hydrol. Earth Syst. Sci., 19, 857–876, https://doi.org/10.5194/hess-19-857-2015, 2015. es_ES
dc.description.references Winsemius, H. C., Savenije, H. H. G., and Bastiaanssen, W. G. M.: Constraining model parameters on remotely sensed evaporation: justification for distribution in ungauged basins?, Hydrol. Earth Syst. Sci., 12, 1403–1413, https://doi.org/10.5194/hess-12-1403-2008, 2008. es_ES
dc.description.references Xiao, X., Zhang, Q., Braswell, B., Urbanski, S., Boles, S., Wofsy, S., Moore, B., and Ojima, D.: Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data, Remote Sens. Environ., 91, 256–270, 2004. es_ES
dc.description.references Yang, Y., Shang, S., and Jiang, L.: Remote sensing temporal and spatial patterns of evapotranspiration and the responses to water management in a large irrigation district of North China, Agr. Forest Meteorol., 164, 112–122, 2012. es_ES
dc.description.references Yuan, W., Liu, S., Zhou, G., Zhou, G., Tieszen, L. L., Baldocchi, D., Bernhofer, C., Gholz, H., Goldstein, A. H., Goulden, M. L., Hollinger, D. Y., Hu, Y., Law, B. E., Stoy, P. C., Vesala, T., and Wofsy, S. C.: Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes, Agr. Forest Meteorol., 143, 189–207, https://doi.org/10.1016/j.agrformet.2006.12.001, 2007. es_ES
dc.description.references Yuan, W., Liu, S., Yu, G., Bonnefond, J.-M., Chen, J., Davis, K., Desai, A. R., Goldstein, A. H., Gianelle, D., Rossi, F., Suyker, A. E., and Verma, S. B.: Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data, Remote Sens. Environ., 114, 1416–1431, 2010. es_ES
dc.description.references Zhang, Y. Q., Francis, H. S., Chiew, H. S., Zhang, L., and Li, H.: Use of remotely sensed actual evapotranspiration to improve rainfall-runoff modeling in southeast Australia, Am. Meteorol. Soc., 10, 969–980, 2009. es_ES
dc.description.references Zhang, Y. Q., Viney, N. R., Chiew, F. H. S., van Dijk, A. I. J. M., and Liu Y. Y.: Improving hydrological and vegetation modelling using regional model calibration schemes together with remote sensing data, 19th International Congress on Modelling and Simulation, Perth, Australia, 12–16 December, 2011. es_ES
dc.description.references Zhang, Y., Peña-Arancibia, J. L., McVicar, T. R., Chiew, F. H., Vaze, J., Liu, C., Lu, X., Zheng H., Wang, Y., Liu, Y., and Miralles, D. G.: Multi-decadal trends in global terrestrial evapotranspiration and its components, Sci. Rep.-UK, 6, 19124, https://doi.org/10.1038/srep19124, 2016. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem