- -

The special closure of polynomial maps and global non-degeneracy

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The special closure of polynomial maps and global non-degeneracy

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bivià-Ausina, Carles es_ES
dc.contributor.author Huarcaya, Jorge Alberto C. es_ES
dc.date.accessioned 2020-09-10T03:31:44Z
dc.date.available 2020-09-10T03:31:44Z
dc.date.issued 2017-04 es_ES
dc.identifier.issn 1660-5446 es_ES
dc.identifier.uri http://hdl.handle.net/10251/149718
dc.description.abstract [EN] Let F : C-n -> C-n be a polynomial map such that F-1 (0) is finite. We analyze the connections between the multiplicity of F, the Newton polyhedron of F and the set of special monomials with respect to F, which is a notion motivated by the integral closure of ideals in the ring of analytic function germs (C-n, 0) -> C. In particular, we characterize the polynomial maps whose set of special monomials is maximal. es_ES
dc.description.sponsorship The first author was partially supported by DGICYT Grant MTM2015-64013-P. The second author was partially supported by FAPESP-BEPE 2012/22365-8. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Mediterranean Journal of Mathematics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Polynomial maps es_ES
dc.subject Multiplicity es_ES
dc.subject Integral closure es_ES
dc.subject Newton polyhedron es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title The special closure of polynomial maps and global non-degeneracy es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00009-017-0879-9 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2015-64013-P/ES/SINGULARIDADES, GEOMETRIA GENERICA Y APLICACIONES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FAPESP//2012%2F22365-8/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Bivià-Ausina, C.; Huarcaya, JAC. (2017). The special closure of polynomial maps and global non-degeneracy. Mediterranean Journal of Mathematics. 14(2):1-21. https://doi.org/10.1007/s00009-017-0879-9 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s00009-017-0879-9 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 21 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 14 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\342528 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Fundação de Amparo à Pesquisa do Estado de São Paulo es_ES
dc.description.references Arnol’d, V.I., Gusein-Zade, S.M., Varchenko, A.N.: Singularities of Differentiable Maps. Vol. I. The Classification of Critical Points, Caustics and Wave Fronts. Monographs in Mathematics. Birkhäuser, Boston (1985) es_ES
dc.description.references Bivià-Ausina, C.: Łojasiewicz exponents, the integral closure of ideals and Newton polyhedrons. J. Math. Soc. Jpn. 55(3), 655–668 (2003) es_ES
dc.description.references Bivià-Ausina, C.: Non-degenerate ideals in formal power series rings. Rocky Mt. J. Math. 34(2), 495–511 (2004) es_ES
dc.description.references Bivià-Ausina, C., Fukui, T., Saia, M.J.: Newton graded algebras and the codimension of non-degenerate ideals. Math. Proc. Camb. Philos. Soc. 133, 55–75 (2002) es_ES
dc.description.references Bivià-Ausina, C., Huarcaya, J.A.C.: Growth at infinity and index of polynomial maps. J. Math. Anal. Appl. 422, 1414–1433 (2015) es_ES
dc.description.references Broughton, S.A.: Milnor numbers and the topology of polynomial hypersurfaces. Invent. Math. 92(2), 217–241 (1988) es_ES
dc.description.references Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry. Graduate Texts in Mathematics, vol. 185, 2nd edn. Springer, Berlin (2005) es_ES
dc.description.references D’Angelo, J.P.: Several Complex Variables and the Geometry of Real Hypersurfaces. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL (1993) es_ES
dc.description.references Ewald, G.: Combinatorial Convexity and Algebraic Geometry. Graduate Texts in Mathematics. Springer, Berlin (1996) es_ES
dc.description.references Gaffney, T.: Integral closure of modules and Whitney equisingularity. Invent. Math. 107, 301–322 (1992) es_ES
dc.description.references Greuel, G.-M., Pfister, G.: A Singular Introduction to Commutative Algebra, 2nd edn. Springer, Berlin (2008) es_ES
dc.description.references Herrmann, M., Ikeda, S., Orbanz, U.: Equimultiplicity and Blowing Up. An Algebraic Study. With An Appendix by B. Moonen. Springer, Berlin (1988) es_ES
dc.description.references Kouchnirenko, A.G.: Polyèdres de Newton et nombres de Milnor. Invent. Math. 32, 1–31 (1976) es_ES
dc.description.references Krasiński, T.: On the Łojasiewicz exponent at infinity of polynomial mappings. Acta Math. Vietnam 32(2–3), 189–203 (2007) es_ES
dc.description.references Huneke, C., Swanson, I.: Integral Closure of Ideals, Rings, and Modules. London Mathematical Society Lecture Note Series, vol. 336. Cambridge University Press, Cambridge (2006) es_ES
dc.description.references Lejeune, M., Teissier, B.: Clôture intégrale des idéaux et equisingularité, with an appendix by J.J. Risler, Centre de Mathématiques, École Polytechnique (1974) and Ann. Fac. Sci. Toulouse Math. (6) 17 (4), 781–859 (2008) es_ES
dc.description.references Li, T.Y., Wang, X.: The BKK root count in $${\mathbb{C}}^{n}$$ C n . Math. Comput. 65(216), 1477–1484 (1996) es_ES
dc.description.references Lloyd, N.G.: Degree Theory, Cambridge Tracts in Mathematics, vol. 73. Cambridge University Press, Cambridge (1978) es_ES
dc.description.references Outerelo, E., Ruiz, J.M.: Mapping Degree Theory, Graduate Studies in Mathematics, vol. 108. American Mathematical Society, Real Sociedad Matemática Española, Madrid, Providence, RI (2009) es_ES
dc.description.references Palamodov, V.P.: The multiplicity of a holomorphic transformation. Funkcional. Anal. i Priložen 1(3), 54–65 (1967) es_ES
dc.description.references Pham, T.S.: On the effective computation of Łojasiewicz exponents via Newton polyhedra. Period. Math. Hung. 54(2), 201–213 (2007) es_ES
dc.description.references Saia, M.J.: The integral closure of ideals and the Newton filtration. J. Algebraic Geom. 5, 1–11 (1996) es_ES
dc.description.references Vasconcelos, W.: Integral Closure. Rees Algebras, Multiplicities, Algorithms. Monographs in Mathematics. Springer, Berlin (2005) es_ES
dc.description.references Yoshinaga, E.: Topologically principal part of analytic functions. Trans. Am. Math. Soc. 314(2), 803–814 (1989) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem