Mostrar el registro sencillo del ítem
dc.contributor.author | Bivià-Ausina, Carles | es_ES |
dc.contributor.author | Huarcaya, Jorge Alberto C. | es_ES |
dc.date.accessioned | 2020-09-10T03:31:44Z | |
dc.date.available | 2020-09-10T03:31:44Z | |
dc.date.issued | 2017-04 | es_ES |
dc.identifier.issn | 1660-5446 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/149718 | |
dc.description.abstract | [EN] Let F : C-n -> C-n be a polynomial map such that F-1 (0) is finite. We analyze the connections between the multiplicity of F, the Newton polyhedron of F and the set of special monomials with respect to F, which is a notion motivated by the integral closure of ideals in the ring of analytic function germs (C-n, 0) -> C. In particular, we characterize the polynomial maps whose set of special monomials is maximal. | es_ES |
dc.description.sponsorship | The first author was partially supported by DGICYT Grant MTM2015-64013-P. The second author was partially supported by FAPESP-BEPE 2012/22365-8. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Mediterranean Journal of Mathematics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Polynomial maps | es_ES |
dc.subject | Multiplicity | es_ES |
dc.subject | Integral closure | es_ES |
dc.subject | Newton polyhedron | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | The special closure of polynomial maps and global non-degeneracy | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s00009-017-0879-9 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2015-64013-P/ES/SINGULARIDADES, GEOMETRIA GENERICA Y APLICACIONES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/FAPESP//2012%2F22365-8/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Bivià-Ausina, C.; Huarcaya, JAC. (2017). The special closure of polynomial maps and global non-degeneracy. Mediterranean Journal of Mathematics. 14(2):1-21. https://doi.org/10.1007/s00009-017-0879-9 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s00009-017-0879-9 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 21 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 14 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.pasarela | S\342528 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Fundação de Amparo à Pesquisa do Estado de São Paulo | es_ES |
dc.description.references | Arnol’d, V.I., Gusein-Zade, S.M., Varchenko, A.N.: Singularities of Differentiable Maps. Vol. I. The Classification of Critical Points, Caustics and Wave Fronts. Monographs in Mathematics. Birkhäuser, Boston (1985) | es_ES |
dc.description.references | Bivià-Ausina, C.: Łojasiewicz exponents, the integral closure of ideals and Newton polyhedrons. J. Math. Soc. Jpn. 55(3), 655–668 (2003) | es_ES |
dc.description.references | Bivià-Ausina, C.: Non-degenerate ideals in formal power series rings. Rocky Mt. J. Math. 34(2), 495–511 (2004) | es_ES |
dc.description.references | Bivià-Ausina, C., Fukui, T., Saia, M.J.: Newton graded algebras and the codimension of non-degenerate ideals. Math. Proc. Camb. Philos. Soc. 133, 55–75 (2002) | es_ES |
dc.description.references | Bivià-Ausina, C., Huarcaya, J.A.C.: Growth at infinity and index of polynomial maps. J. Math. Anal. Appl. 422, 1414–1433 (2015) | es_ES |
dc.description.references | Broughton, S.A.: Milnor numbers and the topology of polynomial hypersurfaces. Invent. Math. 92(2), 217–241 (1988) | es_ES |
dc.description.references | Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry. Graduate Texts in Mathematics, vol. 185, 2nd edn. Springer, Berlin (2005) | es_ES |
dc.description.references | D’Angelo, J.P.: Several Complex Variables and the Geometry of Real Hypersurfaces. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL (1993) | es_ES |
dc.description.references | Ewald, G.: Combinatorial Convexity and Algebraic Geometry. Graduate Texts in Mathematics. Springer, Berlin (1996) | es_ES |
dc.description.references | Gaffney, T.: Integral closure of modules and Whitney equisingularity. Invent. Math. 107, 301–322 (1992) | es_ES |
dc.description.references | Greuel, G.-M., Pfister, G.: A Singular Introduction to Commutative Algebra, 2nd edn. Springer, Berlin (2008) | es_ES |
dc.description.references | Herrmann, M., Ikeda, S., Orbanz, U.: Equimultiplicity and Blowing Up. An Algebraic Study. With An Appendix by B. Moonen. Springer, Berlin (1988) | es_ES |
dc.description.references | Kouchnirenko, A.G.: Polyèdres de Newton et nombres de Milnor. Invent. Math. 32, 1–31 (1976) | es_ES |
dc.description.references | Krasiński, T.: On the Łojasiewicz exponent at infinity of polynomial mappings. Acta Math. Vietnam 32(2–3), 189–203 (2007) | es_ES |
dc.description.references | Huneke, C., Swanson, I.: Integral Closure of Ideals, Rings, and Modules. London Mathematical Society Lecture Note Series, vol. 336. Cambridge University Press, Cambridge (2006) | es_ES |
dc.description.references | Lejeune, M., Teissier, B.: Clôture intégrale des idéaux et equisingularité, with an appendix by J.J. Risler, Centre de Mathématiques, École Polytechnique (1974) and Ann. Fac. Sci. Toulouse Math. (6) 17 (4), 781–859 (2008) | es_ES |
dc.description.references | Li, T.Y., Wang, X.: The BKK root count in $${\mathbb{C}}^{n}$$ C n . Math. Comput. 65(216), 1477–1484 (1996) | es_ES |
dc.description.references | Lloyd, N.G.: Degree Theory, Cambridge Tracts in Mathematics, vol. 73. Cambridge University Press, Cambridge (1978) | es_ES |
dc.description.references | Outerelo, E., Ruiz, J.M.: Mapping Degree Theory, Graduate Studies in Mathematics, vol. 108. American Mathematical Society, Real Sociedad Matemática Española, Madrid, Providence, RI (2009) | es_ES |
dc.description.references | Palamodov, V.P.: The multiplicity of a holomorphic transformation. Funkcional. Anal. i Priložen 1(3), 54–65 (1967) | es_ES |
dc.description.references | Pham, T.S.: On the effective computation of Łojasiewicz exponents via Newton polyhedra. Period. Math. Hung. 54(2), 201–213 (2007) | es_ES |
dc.description.references | Saia, M.J.: The integral closure of ideals and the Newton filtration. J. Algebraic Geom. 5, 1–11 (1996) | es_ES |
dc.description.references | Vasconcelos, W.: Integral Closure. Rees Algebras, Multiplicities, Algorithms. Monographs in Mathematics. Springer, Berlin (2005) | es_ES |
dc.description.references | Yoshinaga, E.: Topologically principal part of analytic functions. Trans. Am. Math. Soc. 314(2), 803–814 (1989) | es_ES |