- -

The special closure of polynomial maps and global non-degeneracy

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The special closure of polynomial maps and global non-degeneracy

Mostrar el registro completo del ítem

Bivià-Ausina, C.; Huarcaya, JAC. (2017). The special closure of polynomial maps and global non-degeneracy. Mediterranean Journal of Mathematics. 14(2):1-21. https://doi.org/10.1007/s00009-017-0879-9

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/149718

Ficheros en el ítem

Metadatos del ítem

Título: The special closure of polynomial maps and global non-degeneracy
Autor: Bivià-Ausina, Carles Huarcaya, Jorge Alberto C.
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Fecha difusión:
Resumen:
[EN] Let F : C-n -> C-n be a polynomial map such that F-1 (0) is finite. We analyze the connections between the multiplicity of F, the Newton polyhedron of F and the set of special monomials with respect to F, which is a ...[+]
Palabras clave: Polynomial maps , Multiplicity , Integral closure , Newton polyhedron
Derechos de uso: Reserva de todos los derechos
Fuente:
Mediterranean Journal of Mathematics. (issn: 1660-5446 )
DOI: 10.1007/s00009-017-0879-9
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s00009-017-0879-9
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//MTM2015-64013-P/ES/SINGULARIDADES, GEOMETRIA GENERICA Y APLICACIONES/
info:eu-repo/grantAgreement/FAPESP//2012%2F22365-8/
Agradecimientos:
The first author was partially supported by DGICYT Grant MTM2015-64013-P. The second author was partially supported by FAPESP-BEPE 2012/22365-8.
Tipo: Artículo

References

Arnol’d, V.I., Gusein-Zade, S.M., Varchenko, A.N.: Singularities of Differentiable Maps. Vol. I. The Classification of Critical Points, Caustics and Wave Fronts. Monographs in Mathematics. Birkhäuser, Boston (1985)

Bivià-Ausina, C.: Łojasiewicz exponents, the integral closure of ideals and Newton polyhedrons. J. Math. Soc. Jpn. 55(3), 655–668 (2003)

Bivià-Ausina, C.: Non-degenerate ideals in formal power series rings. Rocky Mt. J. Math. 34(2), 495–511 (2004) [+]
Arnol’d, V.I., Gusein-Zade, S.M., Varchenko, A.N.: Singularities of Differentiable Maps. Vol. I. The Classification of Critical Points, Caustics and Wave Fronts. Monographs in Mathematics. Birkhäuser, Boston (1985)

Bivià-Ausina, C.: Łojasiewicz exponents, the integral closure of ideals and Newton polyhedrons. J. Math. Soc. Jpn. 55(3), 655–668 (2003)

Bivià-Ausina, C.: Non-degenerate ideals in formal power series rings. Rocky Mt. J. Math. 34(2), 495–511 (2004)

Bivià-Ausina, C., Fukui, T., Saia, M.J.: Newton graded algebras and the codimension of non-degenerate ideals. Math. Proc. Camb. Philos. Soc. 133, 55–75 (2002)

Bivià-Ausina, C., Huarcaya, J.A.C.: Growth at infinity and index of polynomial maps. J. Math. Anal. Appl. 422, 1414–1433 (2015)

Broughton, S.A.: Milnor numbers and the topology of polynomial hypersurfaces. Invent. Math. 92(2), 217–241 (1988)

Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry. Graduate Texts in Mathematics, vol. 185, 2nd edn. Springer, Berlin (2005)

D’Angelo, J.P.: Several Complex Variables and the Geometry of Real Hypersurfaces. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL (1993)

Ewald, G.: Combinatorial Convexity and Algebraic Geometry. Graduate Texts in Mathematics. Springer, Berlin (1996)

Gaffney, T.: Integral closure of modules and Whitney equisingularity. Invent. Math. 107, 301–322 (1992)

Greuel, G.-M., Pfister, G.: A Singular Introduction to Commutative Algebra, 2nd edn. Springer, Berlin (2008)

Herrmann, M., Ikeda, S., Orbanz, U.: Equimultiplicity and Blowing Up. An Algebraic Study. With An Appendix by B. Moonen. Springer, Berlin (1988)

Kouchnirenko, A.G.: Polyèdres de Newton et nombres de Milnor. Invent. Math. 32, 1–31 (1976)

Krasiński, T.: On the Łojasiewicz exponent at infinity of polynomial mappings. Acta Math. Vietnam 32(2–3), 189–203 (2007)

Huneke, C., Swanson, I.: Integral Closure of Ideals, Rings, and Modules. London Mathematical Society Lecture Note Series, vol. 336. Cambridge University Press, Cambridge (2006)

Lejeune, M., Teissier, B.: Clôture intégrale des idéaux et equisingularité, with an appendix by J.J. Risler, Centre de Mathématiques, École Polytechnique (1974) and Ann. Fac. Sci. Toulouse Math. (6) 17 (4), 781–859 (2008)

Li, T.Y., Wang, X.: The BKK root count in $${\mathbb{C}}^{n}$$ C n . Math. Comput. 65(216), 1477–1484 (1996)

Lloyd, N.G.: Degree Theory, Cambridge Tracts in Mathematics, vol. 73. Cambridge University Press, Cambridge (1978)

Outerelo, E., Ruiz, J.M.: Mapping Degree Theory, Graduate Studies in Mathematics, vol. 108. American Mathematical Society, Real Sociedad Matemática Española, Madrid, Providence, RI (2009)

Palamodov, V.P.: The multiplicity of a holomorphic transformation. Funkcional. Anal. i Priložen 1(3), 54–65 (1967)

Pham, T.S.: On the effective computation of Łojasiewicz exponents via Newton polyhedra. Period. Math. Hung. 54(2), 201–213 (2007)

Saia, M.J.: The integral closure of ideals and the Newton filtration. J. Algebraic Geom. 5, 1–11 (1996)

Vasconcelos, W.: Integral Closure. Rees Algebras, Multiplicities, Algorithms. Monographs in Mathematics. Springer, Berlin (2005)

Yoshinaga, E.: Topologically principal part of analytic functions. Trans. Am. Math. Soc. 314(2), 803–814 (1989)

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem