- -

Evaluación del coeficiente de transferencia de oxígeno en procesos de fangos activados para optimizar la aireación

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Evaluación del coeficiente de transferencia de oxígeno en procesos de fangos activados para optimizar la aireación

Mostrar el registro completo del ítem

Ivailova Petkova, I.; Solís, JJ.; Bes Piá, MA.; Aguado García, D. (2020). Evaluación del coeficiente de transferencia de oxígeno en procesos de fangos activados para optimizar la aireación. Ingeniería del agua. 24(3):183-202. https://doi.org/10.4995/ia.2020.12877

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/149843

Ficheros en el ítem

Metadatos del ítem

Título: Evaluación del coeficiente de transferencia de oxígeno en procesos de fangos activados para optimizar la aireación
Otro titulo: Evaluation of the oxygen transfer coefficient in activated sludge processes to optimize the aeration
Autor: Ivailova Petkova, Ivana Solís, J. J. Bes Piá, Mª Amparo Aguado García, Daniel
Entidad UPV: Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos - Escola Tècnica Superior d'Enginyers de Camins, Canals i Ports
Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials
Universitat Politècnica de València. Instituto de Seguridad Industrial, Radiofísica y Medioambiental - Institut de Seguretat Industrial, Radiofísica i Mediambiental
Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient
Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear
Fecha difusión:
Resumen:
[ES] En una Estación Depuradora de Aguas Residuales (EDAR), el mayor consumo energético es el asociado al sistema de aireación del tratamiento biológico. Esto hace que los estudios relacionados con los sistemas de aireación ...[+]


[EN] In a Wastewater Treatment Plant (WWTP), the highest energy consumption is associated with the aeration system of the biological treatment. This makes studies related to the efficiency of the aeration systems interesting, ...[+]
Palabras clave: Optimización aireación , Coeficiente de transferencia de oxígeno , Depuradora , Difusores , Fangos activados , Ahorro energético , Aeration optimization , Oxygen transfer coefficient , Wastewater treatment plant diffuser , Activated sludge , Energetic savings
Derechos de uso: Reconocimiento - No comercial - Compartir igual (by-nc-sa)
Fuente:
Ingeniería del agua. (issn: 1134-2196 ) (eissn: 1886-4996 )
DOI: 10.4995/ia.2020.12877
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/ia.2020.12877
Agradecimientos:
Se agradece a la Entidad Pública de Saneamiento de Aguas Residuales de la Comunidad Valenciana (EPSAR), a la Cátedra Aguas de Valencia y a la empresa Global Ommium, tanto la financiación como la colaboración en la realización ...[+]
Tipo: Artículo

References

Al Ba'ba'a, H.B., Amano, R.S. 2017. A study of optimum aeration efficiency of a lab-scale air-diffused system. Water and Environment Journal, 31(3), 432-439. https://doi.org/10.1111/wej.12261

Albaladejo-Ruiz, A., Albaladejo-Falcó, A. 2016. Parametrización del consumo energético de las depuradoras de aguas residuales (levante español). Dyna (Spain), 91(1), 82-87. https://doi.org/10.6036/7527

APHA, AWWA, WEF. 2012. American Public Health Association, American Water Works Association, Water Environment Federation, Standard Methods for the Examination of Water and Wastewater. 22nd ed., Am. Public Heal. Assoc. Washington, DC, USA. ISBN 9780875532356 [+]
Al Ba'ba'a, H.B., Amano, R.S. 2017. A study of optimum aeration efficiency of a lab-scale air-diffused system. Water and Environment Journal, 31(3), 432-439. https://doi.org/10.1111/wej.12261

Albaladejo-Ruiz, A., Albaladejo-Falcó, A. 2016. Parametrización del consumo energético de las depuradoras de aguas residuales (levante español). Dyna (Spain), 91(1), 82-87. https://doi.org/10.6036/7527

APHA, AWWA, WEF. 2012. American Public Health Association, American Water Works Association, Water Environment Federation, Standard Methods for the Examination of Water and Wastewater. 22nd ed., Am. Public Heal. Assoc. Washington, DC, USA. ISBN 9780875532356

Baylar, A., Ozkan, F. 2006. Applications of venturi principle to water aeration systems. Environmental Fluid Mechanics, 6(4), 341-357. https://doi.org/10.1007/s10652-005-5664-9

Bolles, S. 2006. Modeling wastewater aeration systems to discover energy savings opportunities. Process Energy Services LLC.

Boog, J., Nivala, J., Kalbacher, T., van Afferden, M., Müller, R.A. 2020. Do wastewater pollutants impact oxygen transfer in aerated horizontal flow wetlands? Chemical Engineering Journal, 383, 123173. https://doi.org/10.1016/j.cej.2019.123173

Boyle, W., Craven, A., Danely, W., Riech, M. 1996. Oxygen transfer study at the Madison metropolitan sewerage district facilities. Risk Reduction Engineering Laboratory, Office of research and Division, US EPA, Cincinnati.

Chern, J.M., Yang, S. 2003. Oxygen transfer rate in a coarse bubble diffused aeration systems. Industrial & Engineering Chemistry Research, 42(25), 6653-6660. https://doi.org/10.1021/ie030396y

Collivignarelli, M.C., Abbà, A., Bertanza, G. 2019. Oxygen transfer improvement in MBBR process. Environmental Science and Pollution Research, 26(11), 10727-10737. https://doi.org/10.1007/s11356-019-04535-1

Fan, H., Qi, L., Liu, G., Zhang, Y., Fan, Q., Wang, H. 2017. Science Direct Aeration optimization through operation at low dissolved oxygen concentrations: Evaluation of oxygen mass transfer dynamics in different activated sludge systems. Journal of environmental sciences, 55(2017), 224-235. https://doi.org/10.1016/j.jes.2016.08.008

Ferrer, J., Aguado, D., Barat, R., Serralta, J., Lapuente, E. 2017. Huella energética en el ciclo integral del agua en la Comunidad de Madrid. Fundación Canal Isabel II. ISBN: 978-84-945176-8-6

Ferrer Polo, J. 2007. Tratamientos biológicos de aguas residuales (2a ed..; A. Seco Torrecillas, ed.). Valencia: Editorial UPV, D.L. 2007, 2012.

Foladori, P., Vaccari, M., Vitali, F. 2015. Energy audit in small wastewater treatment plants: methodology, energy consumption indicators, and lessons learned. https://doi.org/10.2166/wst.2015.306

García-Ochoa, F., Gómez, E. 2009. Bioreactor scale-up and oxygen transfer rate in microbial processes: An overview. Biotechnology Advances, 27(2), 153-176. https://doi.org/10.1016/j.biotechadv.2008.10.006

Germain, E., Stephenson, T. 2005. Biomass characteristics, aeration and oxygen transfer in membrane bioreactors: their interrelations explained by a review of aerobic biological processes. Reviews in Environmental Science and Bio/Technology, 4(4), 223. https://doi.org/10.1007/s11157-005-2097-3

Germain, E., Nelles, F., Drews, A., Pearce, P., Kraume, M., Reid, E., Stephenson, T. 2007. Biomass effects on oxygen transfer in membrane bioreactors. Water Research, 41(5), 1038-1044. https://doi.org/10.1016/j.watres.2006.10.020

Henkel, J. 2012. Oxygen Transfer Phenomena in Activated Sludge. Retrieved from http://tuprints.ulb.tu-darmstadt.de/3008/1/Henkel-2010-Oxygen_Transfer_Phenomena_in_Activated_Sludge.pdf

Jenkins, T.E. 2014. Aeration control system design: a practical guide to energy and process optimization (First edit). Hoboken, New Jersey: Wiley. https://doi.org/10.1002/9781118777732

Jiang, L.M., Chen, L., Zhou, Z., Sun, D., Li, Y., Zhang, M., Yao, J. 2020. Fouling characterization and aeration performance recovery of fine-pore diffusers operated for 10 years in a full-scale wastewater treatment plant. Bioresource Technology, 307, 123197. https://doi.org/10.1016/j.biortech.2020.123197

Khatri, N., Khatri, K.K., Sharma, A. 2020. Enhanced Energy Saving in Wastewater Treatment Plant using Dissolved Oxygen Control and Hydrocyclone. Environmental Technology & Innovation, 18, 100678. https://doi.org/10.1016/j.eti.2020.100678

Leu, S.Y., Rosso, D., Larson, L.E., Stenstrom, M.K. 2009. Real-Time Aeration Efficiency Monitoring in the Activated Sludge Process and Methods to Reduce Energy Consumption and Operating Costs. Water Environment Research, 81(12), 2471-2481. https://doi.org/10.2175/106143009X425906

Lindberg, C.F. 1997. Control and estimation strategies applied to the activated sludge process. Finland: Uppsala University.

Liu G., Wang J., Campbell K. 2018. Formation of filamentous microorganisms impedes oxygen transfer and decreases aeration efficiency for wastewater treatment. Journal of Cleaner Production, 189, 502-509. https://doi.org/10.1016/j.jclepro.2018.04.125

Longo S., d'Antoni B.M., Bongards M., Chaparro A., Cronrath A., Fatone F., Hospido A. 2016. Monitoring and diagnosis of energy consumption in wastewater treatment plants. A state of the art and proposals for improvement. Applied Energy, 179, 1251-1268. https://doi.org/10.1016/j.apenergy.2016.07.043

Macintosh, C., Astals, S., Sembera, C., Ertl, A., Drewes, J.E., Jensen, P.D., Koch, K. 2019. Successful strategies for increasing energy self-sufficiency at Grüneck wastewater treatment plant in Germany by food waste co-digestion and improved aeration. Applied Energy, 242, 797-808. https://doi.org/10.1016/j.apenergy.2019.03.126

Metcalf and Eddy. 2002 Wastewater engineering. McGraw Hill Companies, International Edition, Singapore Olsson, G. 2017. Control de procesos. In Carlos M. López Vázquez, Germán Buitrón Méndez, Héctor A. García, Francisco J. Cervantes Carrillo, Tratamiento biológico de aguas residuales: Principios, modelación y diseño. https://doi.org/10.2166/9781780409146

Olsson, G. 2017. Control de procesos. In Carlos M. López Vázquez, Germán Buitrón Méndez, Héctor A. García, Francisco J. Cervantes Carrillo, Tratamiento biológico de aguas residuales: Principios, modelación y diseño. https://doi.org/10.2166/9781780409146

Rosso, D., Stenstrom, M.K. 2006. Economic Implications of Fine-Pore Diffuser Aging. Water Environment Research, 78(8), 810-815. https://doi.org/10.2175/106143006X101683

Rosso, D., Larson, L.E., Stenstrom, M.K. 2008. Aeration of large-scale municipal wastewater treatment plants: State of the art. Water Science and Technology, 57(7), 973-978. https://doi.org/10.2166/wst.2008.218

Stenstrom, M.K., Gilbert, R.G. 1981. Effects of Alpha, Beta and Theta Factors and Surfactants on Specification Design and Operation of Aeration Systems. Water Research, 15, 643-654. https://doi.org/10.1016/0043-1354(81)90156-1

Therrien, J.D., Vanrolleghem, P.A., Dorea, C.C. 2019. Characterization of the performance of venturi-based aeration devices for use in wastewater treatment in low-resource settings. Water SA, 45(2), 251-258. https://doi.org/10.4314/wsa.v45i2.12

Zison S.W. 1978. Rates, constants, and kinetics formulations in surface water quality modelling. Environmental Protection Agency, Office of Research and Development, Environmental Research Laboratory.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem