Mostrar el registro sencillo del ítem
dc.contributor.author | Mattenberger, Florian | es_ES |
dc.contributor.author | Sabater-Muñoz, B. | es_ES |
dc.contributor.author | Toft, C. | es_ES |
dc.contributor.author | Fares Riaño, Mario Ali | es_ES |
dc.date.accessioned | 2020-09-12T03:34:03Z | |
dc.date.available | 2020-09-12T03:34:03Z | |
dc.date.issued | 2017-01 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/149920 | |
dc.description.abstract | [EN] Gene and genome duplication are the major sources of biological innovations in plants and animals. Functional and transcriptional divergence between the copies after gene duplication has been considered the main driver of innovations . However, here we show that increased phenotypic plasticity after duplication plays a more major role than thought before in the origin of adaptations. We perform an exhaustive analysis of the transcriptional alterations of duplicated genes in the unicellular eukaryote Sac- charomyces cerevisiae when challenged with five different environmental stresses. Analysis of the tran- scriptomes of yeast shows that gene duplication increases the transcriptional response to environmental changes, with duplicated genes exhibiting signatures of adaptive transcriptional patterns in response to stress. The mechanism of duplication matters, with whole-genome duplicates being more transcriptionally altered than small-scale duplicates. The predominant transcriptional pattern follows the classic theory of evolution by gene duplication; with one gene copy remaining unaltered under stress, while its sister copy presents large transcriptional plasticity and a prominent role in adaptation. Moreover, we find additional transcriptional profiles that are suggestive of neo- and subfunctionalization of duplicate gene copies. These patterns are strongly correlated with the functional dependencies and sequence divergence profiles of gene copies. We show that, unlike singletons, duplicates respond more specifically to stress, supporting the role of natural selection in the transcriptional plasticity of duplicates. Our results reveal the underlying transcriptional complexity of duplicated genes and its role in the origin of adaptations. | es_ES |
dc.description.sponsorship | This work was supported by a grant from the Spanish Ministerio de Economia y Competitividad (reference: BFU2015-66073-P) and a grant (reference: ACOMP/2015/026) from the local government Conselleria de Educacion Investigacion, Cultura y Deporte, Generalitat Valenciana to M.A.F. C.T. was supported by a grant Juan de la Cierva from the Spanish Ministerio de Economia y Competitividad (reference: JCA-2012-14056). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | The Genetics Society of America | es_ES |
dc.relation.ispartof | G3: Genes, Genomes, Genetics (Bethesda) | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Evolutionary biology | es_ES |
dc.subject | Gene function | es_ES |
dc.subject | Small-scale duplicates | es_ES |
dc.subject | Whole-genome duplicates | es_ES |
dc.subject | Transcriptional profiles | es_ES |
dc.title | The Phenotypic Plasticity of Duplicated Genes in Saccharomyces cerevisiae and the Origin of Adaptations | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1534/g3.116.035329 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BFU2015-66073-P/ES/CARACTERIZANDO LOS MECANISMOS DE INNOVACION POR DUPLICACION GENICA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//ACOMP%2F2015%2F026/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//JCI-2012-14056/ES/JCI-2012-14056/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | Mattenberger, F.; Sabater-Muñoz, B.; Toft, C.; Fares Riaño, MA. (2017). The Phenotypic Plasticity of Duplicated Genes in Saccharomyces cerevisiae and the Origin of Adaptations. G3: Genes, Genomes, Genetics (Bethesda). 7(1):63-75. https://doi.org/10.1534/g3.116.035329 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1534/g3.116.035329 | es_ES |
dc.description.upvformatpinicio | 63 | es_ES |
dc.description.upvformatpfin | 75 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 7 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 2160-1836 | es_ES |
dc.identifier.pmid | 27799339 | es_ES |
dc.identifier.pmcid | PMC5217124 | es_ES |
dc.relation.pasarela | S\324400 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Altschul, S. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389-3402. doi:10.1093/nar/25.17.3389 | es_ES |
dc.description.references | Anders, S., & Huber, W. (2010). Differential expression analysis for sequence count data. Genome Biology, 11(10). doi:10.1186/gb-2010-11-10-r106 | es_ES |
dc.description.references | Barkman, T., & Zhang, J. (2009). Evidence for escape from adaptive conflict? Nature, 462(7274), E1-E1. doi:10.1038/nature08663 | es_ES |
dc.description.references | Bellí, G., Molina, M. M., García-Martínez, J., Pérez-Ortín, J. E., & Herrero, E. (2004). Saccharomyces cerevisiaeGlutaredoxin 5-deficient Cells Subjected to Continuous Oxidizing Conditions Are Affected in the Expression of Specific Sets of Genes. Journal of Biological Chemistry, 279(13), 12386-12395. doi:10.1074/jbc.m311879200 | es_ES |
dc.description.references | Blanc, G., & Wolfe, K. H. (2004). Functional Divergence of Duplicated Genes Formed by Polyploidy during Arabidopsis Evolution. The Plant Cell, 16(7), 1679-1691. doi:10.1105/tpc.021410 | es_ES |
dc.description.references | Byrne, K. P. (2005). The Yeast Gene Order Browser: Combining curated homology and syntenic context reveals gene fate in polyploid species. Genome Research, 15(10), 1456-1461. doi:10.1101/gr.3672305 | es_ES |
dc.description.references | Carretero-Paulet, L., & Fares, M. A. (2012). Evolutionary Dynamics and Functional Specialization of Plant Paralogs Formed by Whole and Small-Scale Genome Duplications. Molecular Biology and Evolution, 29(11), 3541-3551. doi:10.1093/molbev/mss162 | es_ES |
dc.description.references | Causton, H. C., Ren, B., Koh, S. S., Harbison, C. T., Kanin, E., Jennings, E. G., … Young, R. A. (2001). Remodeling of Yeast Genome Expression in Response to Environmental Changes. Molecular Biology of the Cell, 12(2), 323-337. doi:10.1091/mbc.12.2.323 | es_ES |
dc.description.references | Conant, G. C., & Wolfe, K. H. (2006). Functional Partitioning of Yeast Co-Expression Networks after Genome Duplication. PLoS Biology, 4(4), e109. doi:10.1371/journal.pbio.0040109 | es_ES |
dc.description.references | Conant, G. C., & Wolfe, K. H. (2008). Turning a hobby into a job: How duplicated genes find new functions. Nature Reviews Genetics, 9(12), 938-950. doi:10.1038/nrg2482 | es_ES |
dc.description.references | Cormier, L., Barbey, R., & Kuras, L. (2010). Transcriptional plasticity through differential assembly of a multiprotein activation complex. Nucleic Acids Research, 38(15), 4998-5014. doi:10.1093/nar/gkq257 | es_ES |
dc.description.references | Costanzo, M., Baryshnikova, A., Bellay, J., Kim, Y., Spear, E. D., Sevier, C. S., … Mostafavi, S. (2010). The Genetic Landscape of a Cell. Science, 327(5964), 425-431. doi:10.1126/science.1180823 | es_ES |
dc.description.references | Cover T. M. Thomas J. A. , 2006 Elements of Information Theory. Ed. 2. Wiley-Interscience, New York. | es_ES |
dc.description.references | Cui, L. (2006). Widespread genome duplications throughout the history of flowering plants. Genome Research, 16(6), 738-749. doi:10.1101/gr.4825606 | es_ES |
dc.description.references | Dean, E. J., Davis, J. C., Davis, R. W., & Petrov, D. A. (2008). Pervasive and Persistent Redundancy among Duplicated Genes in Yeast. PLoS Genetics, 4(7), e1000113. doi:10.1371/journal.pgen.1000113 | es_ES |
dc.description.references | DeLuna, A., Vetsigian, K., Shoresh, N., Hegreness, M., Colón-González, M., Chao, S., & Kishony, R. (2008). Exposing the fitness contribution of duplicated genes. Nature Genetics, 40(5), 676-681. doi:10.1038/ng.123 | es_ES |
dc.description.references | Dermitzakis, E. T., & Clark, A. G. (2001). Differential Selection After Duplication in Mammalian Developmental Genes. Molecular Biology and Evolution, 18(4), 557-562. doi:10.1093/oxfordjournals.molbev.a003835 | es_ES |
dc.description.references | Des Marais, D. L., & Rausher, M. D. (2008). Escape from adaptive conflict after duplication in an anthocyanin pathway gene. Nature, 454(7205), 762-765. doi:10.1038/nature07092 | es_ES |
dc.description.references | Draghi, J. A., Parsons, T. L., Wagner, G. P., & Plotkin, J. B. (2010). Mutational robustness can facilitate adaptation. Nature, 463(7279), 353-355. doi:10.1038/nature08694 | es_ES |
dc.description.references | Drummond, D. A., & Wilke, C. O. (2008). Mistranslation-Induced Protein Misfolding as a Dominant Constraint on Coding-Sequence Evolution. Cell, 134(2), 341-352. doi:10.1016/j.cell.2008.05.042 | es_ES |
dc.description.references | Drummond, D. A., Bloom, J. D., Adami, C., Wilke, C. O., & Arnold, F. H. (2005). Why highly expressed proteins evolve slowly. Proceedings of the National Academy of Sciences, 102(40), 14338-14343. doi:10.1073/pnas.0504070102 | es_ES |
dc.description.references | Drummond, D. A., Raval, A., & Wilke, C. O. (2005). A Single Determinant Dominates the Rate of Yeast Protein Evolution. Molecular Biology and Evolution, 23(2), 327-337. doi:10.1093/molbev/msj038 | es_ES |
dc.description.references | Fares, M. A. (2015). The origins of mutational robustness. Trends in Genetics, 31(7), 373-381. doi:10.1016/j.tig.2015.04.008 | es_ES |
dc.description.references | Fares, M. A., Keane, O. M., Toft, C., Carretero-Paulet, L., & Jones, G. W. (2013). The Roles of Whole-Genome and Small-Scale Duplications in the Functional Specialization of Saccharomyces cerevisiae Genes. PLoS Genetics, 9(1), e1003176. doi:10.1371/journal.pgen.1003176 | es_ES |
dc.description.references | Ferea, T. L., Botstein, D., Brown, P. O., & Rosenzweig, R. F. (1999). Systematic changes in gene expression patterns following adaptive evolution in yeast. Proceedings of the National Academy of Sciences, 96(17), 9721-9726. doi:10.1073/pnas.96.17.9721 | es_ES |
dc.description.references | Ferris, S. D., & Whitt, G. S. (1979). Evolution of the differential regulation of duplicate genes after polyploidization. Journal of Molecular Evolution, 12(4), 267-317. doi:10.1007/bf01732026 | es_ES |
dc.description.references | Francino, M. P. (2005). An adaptive radiation model for the origin of new gene functions. Nature Genetics, 37(6), 573-578. doi:10.1038/ng1579 | es_ES |
dc.description.references | Gibson, T. J., & Spring, J. (1998). Genetic redundancy in vertebrates: polyploidy and persistence of genes encoding multidomain proteins. Trends in Genetics, 14(2), 46-49. doi:10.1016/s0168-9525(97)01367-x | es_ES |
dc.description.references | Gould, S. J., & Vrba, E. S. (1982). Exaptation—a Missing Term in the Science of Form. Paleobiology, 8(1), 4-15. doi:10.1017/s0094837300004310 | es_ES |
dc.description.references | Gu, Z., Nicolae, D., Lu, H. H.-S., & Li, W.-H. (2002). Rapid divergence in expression between duplicate genes inferred from microarray data. Trends in Genetics, 18(12), 609-613. doi:10.1016/s0168-9525(02)02837-8 | es_ES |
dc.description.references | Ha, M., Li, W.-H., & Chen, Z. J. (2007). External factors accelerate expression divergence between duplicate genes. Trends in Genetics, 23(4), 162-166. doi:10.1016/j.tig.2007.02.005 | es_ES |
dc.description.references | Ha, M., Kim, E.-D., & Chen, Z. J. (2009). Duplicate genes increase expression diversity in closely related species and allopolyploids. Proceedings of the National Academy of Sciences, 106(7), 2295-2300. doi:10.1073/pnas.0807350106 | es_ES |
dc.description.references | Halabi, N., Rivoire, O., Leibler, S., & Ranganathan, R. (2009). Protein Sectors: Evolutionary Units of Three-Dimensional Structure. Cell, 138(4), 774-786. doi:10.1016/j.cell.2009.07.038 | es_ES |
dc.description.references | He, X., & Zhang, J. (2005). Rapid Subfunctionalization Accompanied by Prolonged and Substantial Neofunctionalization in Duplicate Gene Evolution. Genetics, 169(2), 1157-1164. doi:10.1534/genetics.104.037051 | es_ES |
dc.description.references | Hoegg, S., Brinkmann, H., Taylor, J. S., & Meyer, A. (2004). Phylogenetic Timing of the Fish-Specific Genome Duplication Correlates with the Diversification of Teleost Fish. Journal of Molecular Evolution, 59(2), 190-203. doi:10.1007/s00239-004-2613-z | es_ES |
dc.description.references | Hoffmann, F. G., Opazo, J. C., & Storz, J. F. (2011). Differential Loss and Retention of Cytoglobin, Myoglobin, and Globin-E during the Radiation of Vertebrates. Genome Biology and Evolution, 3, 588-600. doi:10.1093/gbe/evr055 | es_ES |
dc.description.references | Hoffmann, F. G., Opazo, J. C., Hoogewijs, D., Hankeln, T., Ebner, B., Vinogradov, S. N., … Storz, J. F. (2012). Evolution of the Globin Gene Family in Deuterostomes: Lineage-Specific Patterns of Diversification and Attrition. Molecular Biology and Evolution, 29(7), 1735-1745. doi:10.1093/molbev/mss018 | es_ES |
dc.description.references | Hoffmann, F. G., Opazo, J. C., & Storz, J. F. (2011). Whole-Genome Duplications Spurred the Functional Diversification of the Globin Gene Superfamily in Vertebrates. Molecular Biology and Evolution, 29(1), 303-312. doi:10.1093/molbev/msr207 | es_ES |
dc.description.references | Holub, E. B. (2001). The arms race is ancient history in Arabidopsis, the wildflower. Nature Reviews Genetics, 2(7), 516-527. doi:10.1038/35080508 | es_ES |
dc.description.references | Huminiecki, L. (2004). Divergence of Spatial Gene Expression Profiles Following Species-Specific Gene Duplications in Human and Mouse. Genome Research, 14(10a), 1870-1879. doi:10.1101/gr.2705204 | es_ES |
dc.description.references | Ideker, T. (2001). Integrated Genomic and Proteomic Analyses of a Systematically Perturbed Metabolic Network. Science, 292(5518), 929-934. doi:10.1126/science.292.5518.929 | es_ES |
dc.description.references | Ihmels, J., Collins, S. R., Schuldiner, M., Krogan, N. J., & Weissman, J. S. (2007). Backup without redundancy: genetic interactions reveal the cost of duplicate gene loss. Molecular Systems Biology, 3(1), 86. doi:10.1038/msb4100127 | es_ES |
dc.description.references | Innan, H., & Kondrashov, F. (2010). The evolution of gene duplications: classifying and distinguishing between models. Nature Reviews Genetics, 11(2), 97-108. doi:10.1038/nrg2689 | es_ES |
dc.description.references | Keane, O. M., Toft, C., Carretero-Paulet, L., Jones, G. W., & Fares, M. A. (2014). Preservation of genetic and regulatory robustness in ancient gene duplicates ofSaccharomyces cerevisiae. Genome Research, 24(11), 1830-1841. doi:10.1101/gr.176792.114 | es_ES |
dc.description.references | Kim, S., Yoo, M.-J., Albert, V. A., Farris, J. S., Soltis, P. S., & Soltis, D. E. (2004). Phylogeny and diversification of B-function MADS-box genes in angiosperms: evolutionary and functional implications of a 260-million-year-old duplication. American Journal of Botany, 91(12), 2102-2118. doi:10.3732/ajb.91.12.2102 | es_ES |
dc.description.references | Landry, C. R., Oh, J., Hartl, D. L., & Cavalieri, D. (2006). Genome-wide scan reveals that genetic variation for transcriptional plasticity in yeast is biased towards multi-copy and dispensable genes. Gene, 366(2), 343-351. doi:10.1016/j.gene.2005.10.042 | es_ES |
dc.description.references | Lespinet, O. (2002). The Role of Lineage-Specific Gene Family Expansion in the Evolution of Eukaryotes. Genome Research, 12(7), 1048-1059. doi:10.1101/gr.174302 | es_ES |
dc.description.references | Li, W.-H., Yang, J., & Gu, X. (2005). Expression divergence between duplicate genes. Trends in Genetics, 21(11), 602-607. doi:10.1016/j.tig.2005.08.006 | es_ES |
dc.description.references | Linde, J., Duggan, S., Weber, M., Horn, F., Sieber, P., Hellwig, D., … Kurzai, O. (2015). Defining the transcriptomic landscape of Candida glabrata by RNA-Seq. Nucleic Acids Research, 43(3), 1392-1406. doi:10.1093/nar/gku1357 | es_ES |
dc.description.references | Lohse, M., Bolger, A. M., Nagel, A., Fernie, A. R., Lunn, J. E., Stitt, M., & Usadel, B. (2012). RobiNA: a user-friendly, integrated software solution for RNA-Seq-based transcriptomics. Nucleic Acids Research, 40(W1), W622-W627. doi:10.1093/nar/gks540 | es_ES |
dc.description.references | Lynch, M. (2000). The Evolutionary Fate and Consequences of Duplicate Genes. Science, 290(5494), 1151-1155. doi:10.1126/science.290.5494.1151 | es_ES |
dc.description.references | Lynch, M., & Conery, J. S. (2003). Journal of Structural and Functional Genomics, 3(1/4), 35-44. doi:10.1023/a:1022696612931 | es_ES |
dc.description.references | Lynch, M., & Katju, V. (2004). The altered evolutionary trajectories of gene duplicates. Trends in Genetics, 20(11), 544-549. doi:10.1016/j.tig.2004.09.001 | es_ES |
dc.description.references | Marcet-Houben, M., & Gabaldón, T. (2015). Beyond the Whole-Genome Duplication: Phylogenetic Evidence for an Ancient Interspecies Hybridization in the Baker’s Yeast Lineage. PLOS Biology, 13(8), e1002220. doi:10.1371/journal.pbio.1002220 | es_ES |
dc.description.references | Musso, G., Costanzo, M., Huangfu, M., Smith, A. M., Paw, J., San Luis, B.-J., … Zhang, Z. (2008). The extensive and condition-dependent nature of epistasis among whole-genome duplicates in yeast. Genome Research, 18(7), 1092-1099. doi:10.1101/gr.076174.108 | es_ES |
dc.description.references | Ohler, U., & Niemann, H. (2001). Identification and analysis of eukaryotic promoters: recent computational approaches. Trends in Genetics, 17(2), 56-60. doi:10.1016/s0168-9525(00)02174-0 | es_ES |
dc.description.references | Ohno S. , 1970 Evolution by Gene Duplication. Springer Verlag, New York. | es_ES |
dc.description.references | Ohno, S. (1999). Gene duplication and the uniqueness of vertebrate genomes circa 1970–1999. Seminars in Cell & Developmental Biology, 10(5), 517-522. doi:10.1006/scdb.1999.0332 | es_ES |
dc.description.references | Otto, S. P., & Whitton, J. (2000). Polyploid Incidence and Evolution. Annual Review of Genetics, 34(1), 401-437. doi:10.1146/annurev.genet.34.1.401 | es_ES |
dc.description.references | Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2009). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1), 139-140. doi:10.1093/bioinformatics/btp616 | es_ES |
dc.description.references | Rocha, E. P. C., & Danchin, A. (2004). An Analysis of Determinants of Amino Acids Substitution Rates in Bacterial Proteins. Molecular Biology and Evolution, 21(1), 108-116. doi:10.1093/molbev/msh004 | es_ES |
dc.description.references | Ruiz-González, M. X., & Fares, M. A. (2013). Coevolution analyses illuminate the dependencies between amino acid sites in the chaperonin system GroES-L. BMC Evolutionary Biology, 13(1), 156. doi:10.1186/1471-2148-13-156 | es_ES |
dc.description.references | Steinmetz, L. M., Scharfe, C., Deutschbauer, A. M., Mokranjac, D., Herman, Z. S., Jones, T., … Davis, R. W. (2002). Systematic screen for human disease genes in yeast. Nature Genetics, 31(4), 400-404. doi:10.1038/ng929 | es_ES |
dc.description.references | Stern, S., Dror, T., Stolovicki, E., Brenner, N., & Braun, E. (2007). Genome‐wide transcriptional plasticity underlies cellular adaptation to novel challenge. Molecular Systems Biology, 3(1), 106. doi:10.1038/msb4100147 | es_ES |
dc.description.references | Storz, J. F., Opazo, J. C., & Hoffmann, F. G. (2011). Phylogenetic diversification of the globin gene superfamily in chordates. IUBMB Life, 63(5), 313-322. doi:10.1002/iub.482 | es_ES |
dc.description.references | Storz, J. F., Opazo, J. C., & Hoffmann, F. G. (2013). Gene duplication, genome duplication, and the functional diversification of vertebrate globins. Molecular Phylogenetics and Evolution, 66(2), 469-478. doi:10.1016/j.ympev.2012.07.013 | es_ES |
dc.description.references | Taylor, J. S., & Raes, J. (2004). Duplication and Divergence: The Evolution of New Genes and Old Ideas. Annual Review of Genetics, 38(1), 615-643. doi:10.1146/annurev.genet.38.072902.092831 | es_ES |
dc.description.references | Thompson, D. A., Roy, S., Chan, M., Styczynsky, M. P., Pfiffner, J., French, C., … Regev, A. (2013). Evolutionary principles of modular gene regulation in yeasts. eLife, 2. doi:10.7554/elife.00603 | es_ES |
dc.description.references | Tong, A. H. Y. (2001). Systematic Genetic Analysis with Ordered Arrays of Yeast Deletion Mutants. Science, 294(5550), 2364-2368. doi:10.1126/science.1065810 | es_ES |
dc.description.references | VanderSluis, B., Bellay, J., Musso, G., Costanzo, M., Papp, B., Vizeacoumar, F. J., … Myers, C. L. (2010). Genetic interactions reveal the evolutionary trajectories of duplicate genes. Molecular Systems Biology, 6(1), 429. doi:10.1038/msb.2010.82 | es_ES |
dc.description.references | VEITIA, R. A. (2003). Nonlinear Effects in Macromolecular Assembly and Dosage Sensitivity. Journal of Theoretical Biology, 220(1), 19-25. doi:10.1006/jtbi.2003.3105 | es_ES |
dc.description.references | VEITIA, R. A. (2003). A sigmoidal transcriptional response: cooperativity, synergy and dosage effects. Biological Reviews of the Cambridge Philosophical Society, 78(1), 149-170. doi:10.1017/s1464793102006036 | es_ES |
dc.description.references | Wagner, A. (2000). Decoupled evolution of coding region and mRNA expression patterns after gene duplication: Implications for the neutralist-selectionist debate. Proceedings of the National Academy of Sciences, 97(12), 6579-6584. doi:10.1073/pnas.110147097 | es_ES |
dc.description.references | Wagner, A. (2000). Robustness against mutations in genetic networks of yeast. Nature Genetics, 24(4), 355-361. doi:10.1038/74174 | es_ES |
dc.description.references | Wagner, A. (2005). Robustness, evolvability, and neutrality. FEBS Letters, 579(8), 1772-1778. doi:10.1016/j.febslet.2005.01.063 | es_ES |
dc.description.references | Wang, Y., Wang, X., & Paterson, A. H. (2012). Genome and gene duplications and gene expression divergence: a view from plants. Annals of the New York Academy of Sciences, 1256(1), 1-14. doi:10.1111/j.1749-6632.2011.06384.x | es_ES |
dc.description.references | Wendel, J. F. (2000). Plant Molecular Biology, 42(1), 225-249. doi:10.1023/a:1006392424384 | es_ES |
dc.description.references | Wilke, C. O., & Drummond, D. A. (2006). Population Genetics of Translational Robustness. Genetics, 173(1), 473-481. doi:10.1534/genetics.105.051300 | es_ES |
dc.description.references | Wolfe, K. H. (2015). Origin of the Yeast Whole-Genome Duplication. PLOS Biology, 13(8), e1002221. doi:10.1371/journal.pbio.1002221 | es_ES |
dc.description.references | Wolfe, K. H., & Shields, D. C. (1997). Molecular evidence for an ancient duplication of the entire yeast genome. Nature, 387(6634), 708-713. doi:10.1038/42711 | es_ES |
dc.description.references | Yang, Z. (2007). PAML 4: Phylogenetic Analysis by Maximum Likelihood. Molecular Biology and Evolution, 24(8), 1586-1591. doi:10.1093/molbev/msm088 | es_ES |
dc.description.references | Zhang, Z. H., Jhaveri, D. J., Marshall, V. M., Bauer, D. C., Edson, J., Narayanan, R. K., … Zhao, Q.-Y. (2014). A Comparative Study of Techniques for Differential Expression Analysis on RNA-Seq Data. PLoS ONE, 9(8), e103207. doi:10.1371/journal.pone.0103207 | es_ES |