- -

The Phenotypic Plasticity of Duplicated Genes in Saccharomyces cerevisiae and the Origin of Adaptations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The Phenotypic Plasticity of Duplicated Genes in Saccharomyces cerevisiae and the Origin of Adaptations

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mattenberger, Florian es_ES
dc.contributor.author Sabater-Muñoz, B. es_ES
dc.contributor.author Toft, C. es_ES
dc.contributor.author Fares Riaño, Mario Ali es_ES
dc.date.accessioned 2020-09-12T03:34:03Z
dc.date.available 2020-09-12T03:34:03Z
dc.date.issued 2017-01 es_ES
dc.identifier.uri http://hdl.handle.net/10251/149920
dc.description.abstract [EN] Gene and genome duplication are the major sources of biological innovations in plants and animals. Functional and transcriptional divergence between the copies after gene duplication has been considered the main driver of innovations . However, here we show that increased phenotypic plasticity after duplication plays a more major role than thought before in the origin of adaptations. We perform an exhaustive analysis of the transcriptional alterations of duplicated genes in the unicellular eukaryote Sac- charomyces cerevisiae when challenged with five different environmental stresses. Analysis of the tran- scriptomes of yeast shows that gene duplication increases the transcriptional response to environmental changes, with duplicated genes exhibiting signatures of adaptive transcriptional patterns in response to stress. The mechanism of duplication matters, with whole-genome duplicates being more transcriptionally altered than small-scale duplicates. The predominant transcriptional pattern follows the classic theory of evolution by gene duplication; with one gene copy remaining unaltered under stress, while its sister copy presents large transcriptional plasticity and a prominent role in adaptation. Moreover, we find additional transcriptional profiles that are suggestive of neo- and subfunctionalization of duplicate gene copies. These patterns are strongly correlated with the functional dependencies and sequence divergence profiles of gene copies. We show that, unlike singletons, duplicates respond more specifically to stress, supporting the role of natural selection in the transcriptional plasticity of duplicates. Our results reveal the underlying transcriptional complexity of duplicated genes and its role in the origin of adaptations. es_ES
dc.description.sponsorship This work was supported by a grant from the Spanish Ministerio de Economia y Competitividad (reference: BFU2015-66073-P) and a grant (reference: ACOMP/2015/026) from the local government Conselleria de Educacion Investigacion, Cultura y Deporte, Generalitat Valenciana to M.A.F. C.T. was supported by a grant Juan de la Cierva from the Spanish Ministerio de Economia y Competitividad (reference: JCA-2012-14056). es_ES
dc.language Inglés es_ES
dc.publisher The Genetics Society of America es_ES
dc.relation.ispartof G3: Genes, Genomes, Genetics (Bethesda) es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Evolutionary biology es_ES
dc.subject Gene function es_ES
dc.subject Small-scale duplicates es_ES
dc.subject Whole-genome duplicates es_ES
dc.subject Transcriptional profiles es_ES
dc.title The Phenotypic Plasticity of Duplicated Genes in Saccharomyces cerevisiae and the Origin of Adaptations es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1534/g3.116.035329 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BFU2015-66073-P/ES/CARACTERIZANDO LOS MECANISMOS DE INNOVACION POR DUPLICACION GENICA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACOMP%2F2015%2F026/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//JCI-2012-14056/ES/JCI-2012-14056/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Mattenberger, F.; Sabater-Muñoz, B.; Toft, C.; Fares Riaño, MA. (2017). The Phenotypic Plasticity of Duplicated Genes in Saccharomyces cerevisiae and the Origin of Adaptations. G3: Genes, Genomes, Genetics (Bethesda). 7(1):63-75. https://doi.org/10.1534/g3.116.035329 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1534/g3.116.035329 es_ES
dc.description.upvformatpinicio 63 es_ES
dc.description.upvformatpfin 75 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 2160-1836 es_ES
dc.identifier.pmid 27799339 es_ES
dc.identifier.pmcid PMC5217124 es_ES
dc.relation.pasarela S\324400 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Altschul, S. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389-3402. doi:10.1093/nar/25.17.3389 es_ES
dc.description.references Anders, S., & Huber, W. (2010). Differential expression analysis for sequence count data. Genome Biology, 11(10). doi:10.1186/gb-2010-11-10-r106 es_ES
dc.description.references Barkman, T., & Zhang, J. (2009). Evidence for escape from adaptive conflict? Nature, 462(7274), E1-E1. doi:10.1038/nature08663 es_ES
dc.description.references Bellí, G., Molina, M. M., García-Martínez, J., Pérez-Ortín, J. E., & Herrero, E. (2004). Saccharomyces cerevisiaeGlutaredoxin 5-deficient Cells Subjected to Continuous Oxidizing Conditions Are Affected in the Expression of Specific Sets of Genes. Journal of Biological Chemistry, 279(13), 12386-12395. doi:10.1074/jbc.m311879200 es_ES
dc.description.references Blanc, G., & Wolfe, K. H. (2004). Functional Divergence of Duplicated Genes Formed by Polyploidy during Arabidopsis Evolution. The Plant Cell, 16(7), 1679-1691. doi:10.1105/tpc.021410 es_ES
dc.description.references Byrne, K. P. (2005). The Yeast Gene Order Browser: Combining curated homology and syntenic context reveals gene fate in polyploid species. Genome Research, 15(10), 1456-1461. doi:10.1101/gr.3672305 es_ES
dc.description.references Carretero-Paulet, L., & Fares, M. A. (2012). Evolutionary Dynamics and Functional Specialization of Plant Paralogs Formed by Whole and Small-Scale Genome Duplications. Molecular Biology and Evolution, 29(11), 3541-3551. doi:10.1093/molbev/mss162 es_ES
dc.description.references Causton, H. C., Ren, B., Koh, S. S., Harbison, C. T., Kanin, E., Jennings, E. G., … Young, R. A. (2001). Remodeling of Yeast Genome Expression in Response to Environmental Changes. Molecular Biology of the Cell, 12(2), 323-337. doi:10.1091/mbc.12.2.323 es_ES
dc.description.references Conant, G. C., & Wolfe, K. H. (2006). Functional Partitioning of Yeast Co-Expression Networks after Genome Duplication. PLoS Biology, 4(4), e109. doi:10.1371/journal.pbio.0040109 es_ES
dc.description.references Conant, G. C., & Wolfe, K. H. (2008). Turning a hobby into a job: How duplicated genes find new functions. Nature Reviews Genetics, 9(12), 938-950. doi:10.1038/nrg2482 es_ES
dc.description.references Cormier, L., Barbey, R., & Kuras, L. (2010). Transcriptional plasticity through differential assembly of a multiprotein activation complex. Nucleic Acids Research, 38(15), 4998-5014. doi:10.1093/nar/gkq257 es_ES
dc.description.references Costanzo, M., Baryshnikova, A., Bellay, J., Kim, Y., Spear, E. D., Sevier, C. S., … Mostafavi, S. (2010). The Genetic Landscape of a Cell. Science, 327(5964), 425-431. doi:10.1126/science.1180823 es_ES
dc.description.references Cover T. M. Thomas J. A. , 2006  Elements of Information Theory. Ed. 2. Wiley-Interscience, New York. es_ES
dc.description.references Cui, L. (2006). Widespread genome duplications throughout the history of flowering plants. Genome Research, 16(6), 738-749. doi:10.1101/gr.4825606 es_ES
dc.description.references Dean, E. J., Davis, J. C., Davis, R. W., & Petrov, D. A. (2008). Pervasive and Persistent Redundancy among Duplicated Genes in Yeast. PLoS Genetics, 4(7), e1000113. doi:10.1371/journal.pgen.1000113 es_ES
dc.description.references DeLuna, A., Vetsigian, K., Shoresh, N., Hegreness, M., Colón-González, M., Chao, S., & Kishony, R. (2008). Exposing the fitness contribution of duplicated genes. Nature Genetics, 40(5), 676-681. doi:10.1038/ng.123 es_ES
dc.description.references Dermitzakis, E. T., & Clark, A. G. (2001). Differential Selection After Duplication in Mammalian Developmental Genes. Molecular Biology and Evolution, 18(4), 557-562. doi:10.1093/oxfordjournals.molbev.a003835 es_ES
dc.description.references Des Marais, D. L., & Rausher, M. D. (2008). Escape from adaptive conflict after duplication in an anthocyanin pathway gene. Nature, 454(7205), 762-765. doi:10.1038/nature07092 es_ES
dc.description.references Draghi, J. A., Parsons, T. L., Wagner, G. P., & Plotkin, J. B. (2010). Mutational robustness can facilitate adaptation. Nature, 463(7279), 353-355. doi:10.1038/nature08694 es_ES
dc.description.references Drummond, D. A., & Wilke, C. O. (2008). Mistranslation-Induced Protein Misfolding as a Dominant Constraint on Coding-Sequence Evolution. Cell, 134(2), 341-352. doi:10.1016/j.cell.2008.05.042 es_ES
dc.description.references Drummond, D. A., Bloom, J. D., Adami, C., Wilke, C. O., & Arnold, F. H. (2005). Why highly expressed proteins evolve slowly. Proceedings of the National Academy of Sciences, 102(40), 14338-14343. doi:10.1073/pnas.0504070102 es_ES
dc.description.references Drummond, D. A., Raval, A., & Wilke, C. O. (2005). A Single Determinant Dominates the Rate of Yeast Protein Evolution. Molecular Biology and Evolution, 23(2), 327-337. doi:10.1093/molbev/msj038 es_ES
dc.description.references Fares, M. A. (2015). The origins of mutational robustness. Trends in Genetics, 31(7), 373-381. doi:10.1016/j.tig.2015.04.008 es_ES
dc.description.references Fares, M. A., Keane, O. M., Toft, C., Carretero-Paulet, L., & Jones, G. W. (2013). The Roles of Whole-Genome and Small-Scale Duplications in the Functional Specialization of Saccharomyces cerevisiae Genes. PLoS Genetics, 9(1), e1003176. doi:10.1371/journal.pgen.1003176 es_ES
dc.description.references Ferea, T. L., Botstein, D., Brown, P. O., & Rosenzweig, R. F. (1999). Systematic changes in gene expression patterns following adaptive evolution in yeast. Proceedings of the National Academy of Sciences, 96(17), 9721-9726. doi:10.1073/pnas.96.17.9721 es_ES
dc.description.references Ferris, S. D., & Whitt, G. S. (1979). Evolution of the differential regulation of duplicate genes after polyploidization. Journal of Molecular Evolution, 12(4), 267-317. doi:10.1007/bf01732026 es_ES
dc.description.references Francino, M. P. (2005). An adaptive radiation model for the origin of new gene functions. Nature Genetics, 37(6), 573-578. doi:10.1038/ng1579 es_ES
dc.description.references Gibson, T. J., & Spring, J. (1998). Genetic redundancy in vertebrates: polyploidy and persistence of genes encoding multidomain proteins. Trends in Genetics, 14(2), 46-49. doi:10.1016/s0168-9525(97)01367-x es_ES
dc.description.references Gould, S. J., & Vrba, E. S. (1982). Exaptation—a Missing Term in the Science of Form. Paleobiology, 8(1), 4-15. doi:10.1017/s0094837300004310 es_ES
dc.description.references Gu, Z., Nicolae, D., Lu, H. H.-S., & Li, W.-H. (2002). Rapid divergence in expression between duplicate genes inferred from microarray data. Trends in Genetics, 18(12), 609-613. doi:10.1016/s0168-9525(02)02837-8 es_ES
dc.description.references Ha, M., Li, W.-H., & Chen, Z. J. (2007). External factors accelerate expression divergence between duplicate genes. Trends in Genetics, 23(4), 162-166. doi:10.1016/j.tig.2007.02.005 es_ES
dc.description.references Ha, M., Kim, E.-D., & Chen, Z. J. (2009). Duplicate genes increase expression diversity in closely related species and allopolyploids. Proceedings of the National Academy of Sciences, 106(7), 2295-2300. doi:10.1073/pnas.0807350106 es_ES
dc.description.references Halabi, N., Rivoire, O., Leibler, S., & Ranganathan, R. (2009). Protein Sectors: Evolutionary Units of Three-Dimensional Structure. Cell, 138(4), 774-786. doi:10.1016/j.cell.2009.07.038 es_ES
dc.description.references He, X., & Zhang, J. (2005). Rapid Subfunctionalization Accompanied by Prolonged and Substantial Neofunctionalization in Duplicate Gene Evolution. Genetics, 169(2), 1157-1164. doi:10.1534/genetics.104.037051 es_ES
dc.description.references Hoegg, S., Brinkmann, H., Taylor, J. S., & Meyer, A. (2004). Phylogenetic Timing of the Fish-Specific Genome Duplication Correlates with the Diversification of Teleost Fish. Journal of Molecular Evolution, 59(2), 190-203. doi:10.1007/s00239-004-2613-z es_ES
dc.description.references Hoffmann, F. G., Opazo, J. C., & Storz, J. F. (2011). Differential Loss and Retention of Cytoglobin, Myoglobin, and Globin-E during the Radiation of Vertebrates. Genome Biology and Evolution, 3, 588-600. doi:10.1093/gbe/evr055 es_ES
dc.description.references Hoffmann, F. G., Opazo, J. C., Hoogewijs, D., Hankeln, T., Ebner, B., Vinogradov, S. N., … Storz, J. F. (2012). Evolution of the Globin Gene Family in Deuterostomes: Lineage-Specific Patterns of Diversification and Attrition. Molecular Biology and Evolution, 29(7), 1735-1745. doi:10.1093/molbev/mss018 es_ES
dc.description.references Hoffmann, F. G., Opazo, J. C., & Storz, J. F. (2011). Whole-Genome Duplications Spurred the Functional Diversification of the Globin Gene Superfamily in Vertebrates. Molecular Biology and Evolution, 29(1), 303-312. doi:10.1093/molbev/msr207 es_ES
dc.description.references Holub, E. B. (2001). The arms race is ancient history in Arabidopsis, the wildflower. Nature Reviews Genetics, 2(7), 516-527. doi:10.1038/35080508 es_ES
dc.description.references Huminiecki, L. (2004). Divergence of Spatial Gene Expression Profiles Following Species-Specific Gene Duplications in Human and Mouse. Genome Research, 14(10a), 1870-1879. doi:10.1101/gr.2705204 es_ES
dc.description.references Ideker, T. (2001). Integrated Genomic and Proteomic Analyses of a Systematically Perturbed Metabolic Network. Science, 292(5518), 929-934. doi:10.1126/science.292.5518.929 es_ES
dc.description.references Ihmels, J., Collins, S. R., Schuldiner, M., Krogan, N. J., & Weissman, J. S. (2007). Backup without redundancy: genetic interactions reveal the cost of duplicate gene loss. Molecular Systems Biology, 3(1), 86. doi:10.1038/msb4100127 es_ES
dc.description.references Innan, H., & Kondrashov, F. (2010). The evolution of gene duplications: classifying and distinguishing between models. Nature Reviews Genetics, 11(2), 97-108. doi:10.1038/nrg2689 es_ES
dc.description.references Keane, O. M., Toft, C., Carretero-Paulet, L., Jones, G. W., & Fares, M. A. (2014). Preservation of genetic and regulatory robustness in ancient gene duplicates ofSaccharomyces cerevisiae. Genome Research, 24(11), 1830-1841. doi:10.1101/gr.176792.114 es_ES
dc.description.references Kim, S., Yoo, M.-J., Albert, V. A., Farris, J. S., Soltis, P. S., & Soltis, D. E. (2004). Phylogeny and diversification of B-function MADS-box genes in angiosperms: evolutionary and functional implications of a 260-million-year-old duplication. American Journal of Botany, 91(12), 2102-2118. doi:10.3732/ajb.91.12.2102 es_ES
dc.description.references Landry, C. R., Oh, J., Hartl, D. L., & Cavalieri, D. (2006). Genome-wide scan reveals that genetic variation for transcriptional plasticity in yeast is biased towards multi-copy and dispensable genes. Gene, 366(2), 343-351. doi:10.1016/j.gene.2005.10.042 es_ES
dc.description.references Lespinet, O. (2002). The Role of Lineage-Specific Gene Family Expansion in the Evolution of Eukaryotes. Genome Research, 12(7), 1048-1059. doi:10.1101/gr.174302 es_ES
dc.description.references Li, W.-H., Yang, J., & Gu, X. (2005). Expression divergence between duplicate genes. Trends in Genetics, 21(11), 602-607. doi:10.1016/j.tig.2005.08.006 es_ES
dc.description.references Linde, J., Duggan, S., Weber, M., Horn, F., Sieber, P., Hellwig, D., … Kurzai, O. (2015). Defining the transcriptomic landscape of Candida glabrata by RNA-Seq. Nucleic Acids Research, 43(3), 1392-1406. doi:10.1093/nar/gku1357 es_ES
dc.description.references Lohse, M., Bolger, A. M., Nagel, A., Fernie, A. R., Lunn, J. E., Stitt, M., & Usadel, B. (2012). RobiNA: a user-friendly, integrated software solution for RNA-Seq-based transcriptomics. Nucleic Acids Research, 40(W1), W622-W627. doi:10.1093/nar/gks540 es_ES
dc.description.references Lynch, M. (2000). The Evolutionary Fate and Consequences of Duplicate Genes. Science, 290(5494), 1151-1155. doi:10.1126/science.290.5494.1151 es_ES
dc.description.references Lynch, M., & Conery, J. S. (2003). Journal of Structural and Functional Genomics, 3(1/4), 35-44. doi:10.1023/a:1022696612931 es_ES
dc.description.references Lynch, M., & Katju, V. (2004). The altered evolutionary trajectories of gene duplicates. Trends in Genetics, 20(11), 544-549. doi:10.1016/j.tig.2004.09.001 es_ES
dc.description.references Marcet-Houben, M., & Gabaldón, T. (2015). Beyond the Whole-Genome Duplication: Phylogenetic Evidence for an Ancient Interspecies Hybridization in the Baker’s Yeast Lineage. PLOS Biology, 13(8), e1002220. doi:10.1371/journal.pbio.1002220 es_ES
dc.description.references Musso, G., Costanzo, M., Huangfu, M., Smith, A. M., Paw, J., San Luis, B.-J., … Zhang, Z. (2008). The extensive and condition-dependent nature of epistasis among whole-genome duplicates in yeast. Genome Research, 18(7), 1092-1099. doi:10.1101/gr.076174.108 es_ES
dc.description.references Ohler, U., & Niemann, H. (2001). Identification and analysis of eukaryotic promoters: recent computational approaches. Trends in Genetics, 17(2), 56-60. doi:10.1016/s0168-9525(00)02174-0 es_ES
dc.description.references Ohno S. , 1970  Evolution by Gene Duplication. Springer Verlag, New York. es_ES
dc.description.references Ohno, S. (1999). Gene duplication and the uniqueness of vertebrate genomes circa 1970–1999. Seminars in Cell & Developmental Biology, 10(5), 517-522. doi:10.1006/scdb.1999.0332 es_ES
dc.description.references Otto, S. P., & Whitton, J. (2000). Polyploid Incidence and Evolution. Annual Review of Genetics, 34(1), 401-437. doi:10.1146/annurev.genet.34.1.401 es_ES
dc.description.references Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2009). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1), 139-140. doi:10.1093/bioinformatics/btp616 es_ES
dc.description.references Rocha, E. P. C., & Danchin, A. (2004). An Analysis of Determinants of Amino Acids Substitution Rates in Bacterial Proteins. Molecular Biology and Evolution, 21(1), 108-116. doi:10.1093/molbev/msh004 es_ES
dc.description.references Ruiz-González, M. X., & Fares, M. A. (2013). Coevolution analyses illuminate the dependencies between amino acid sites in the chaperonin system GroES-L. BMC Evolutionary Biology, 13(1), 156. doi:10.1186/1471-2148-13-156 es_ES
dc.description.references Steinmetz, L. M., Scharfe, C., Deutschbauer, A. M., Mokranjac, D., Herman, Z. S., Jones, T., … Davis, R. W. (2002). Systematic screen for human disease genes in yeast. Nature Genetics, 31(4), 400-404. doi:10.1038/ng929 es_ES
dc.description.references Stern, S., Dror, T., Stolovicki, E., Brenner, N., & Braun, E. (2007). Genome‐wide transcriptional plasticity underlies cellular adaptation to novel challenge. Molecular Systems Biology, 3(1), 106. doi:10.1038/msb4100147 es_ES
dc.description.references Storz, J. F., Opazo, J. C., & Hoffmann, F. G. (2011). Phylogenetic diversification of the globin gene superfamily in chordates. IUBMB Life, 63(5), 313-322. doi:10.1002/iub.482 es_ES
dc.description.references Storz, J. F., Opazo, J. C., & Hoffmann, F. G. (2013). Gene duplication, genome duplication, and the functional diversification of vertebrate globins. Molecular Phylogenetics and Evolution, 66(2), 469-478. doi:10.1016/j.ympev.2012.07.013 es_ES
dc.description.references Taylor, J. S., & Raes, J. (2004). Duplication and Divergence: The Evolution of New Genes and Old Ideas. Annual Review of Genetics, 38(1), 615-643. doi:10.1146/annurev.genet.38.072902.092831 es_ES
dc.description.references Thompson, D. A., Roy, S., Chan, M., Styczynsky, M. P., Pfiffner, J., French, C., … Regev, A. (2013). Evolutionary principles of modular gene regulation in yeasts. eLife, 2. doi:10.7554/elife.00603 es_ES
dc.description.references Tong, A. H. Y. (2001). Systematic Genetic Analysis with Ordered Arrays of Yeast Deletion Mutants. Science, 294(5550), 2364-2368. doi:10.1126/science.1065810 es_ES
dc.description.references VanderSluis, B., Bellay, J., Musso, G., Costanzo, M., Papp, B., Vizeacoumar, F. J., … Myers, C. L. (2010). Genetic interactions reveal the evolutionary trajectories of duplicate genes. Molecular Systems Biology, 6(1), 429. doi:10.1038/msb.2010.82 es_ES
dc.description.references VEITIA, R. A. (2003). Nonlinear Effects in Macromolecular Assembly and Dosage Sensitivity. Journal of Theoretical Biology, 220(1), 19-25. doi:10.1006/jtbi.2003.3105 es_ES
dc.description.references VEITIA, R. A. (2003). A sigmoidal transcriptional response: cooperativity, synergy and dosage effects. Biological Reviews of the Cambridge Philosophical Society, 78(1), 149-170. doi:10.1017/s1464793102006036 es_ES
dc.description.references Wagner, A. (2000). Decoupled evolution of coding region and mRNA expression patterns after gene duplication: Implications for the neutralist-selectionist debate. Proceedings of the National Academy of Sciences, 97(12), 6579-6584. doi:10.1073/pnas.110147097 es_ES
dc.description.references Wagner, A. (2000). Robustness against mutations in genetic networks of yeast. Nature Genetics, 24(4), 355-361. doi:10.1038/74174 es_ES
dc.description.references Wagner, A. (2005). Robustness, evolvability, and neutrality. FEBS Letters, 579(8), 1772-1778. doi:10.1016/j.febslet.2005.01.063 es_ES
dc.description.references Wang, Y., Wang, X., & Paterson, A. H. (2012). Genome and gene duplications and gene expression divergence: a view from plants. Annals of the New York Academy of Sciences, 1256(1), 1-14. doi:10.1111/j.1749-6632.2011.06384.x es_ES
dc.description.references Wendel, J. F. (2000). Plant Molecular Biology, 42(1), 225-249. doi:10.1023/a:1006392424384 es_ES
dc.description.references Wilke, C. O., & Drummond, D. A. (2006). Population Genetics of Translational Robustness. Genetics, 173(1), 473-481. doi:10.1534/genetics.105.051300 es_ES
dc.description.references Wolfe, K. H. (2015). Origin of the Yeast Whole-Genome Duplication. PLOS Biology, 13(8), e1002221. doi:10.1371/journal.pbio.1002221 es_ES
dc.description.references Wolfe, K. H., & Shields, D. C. (1997). Molecular evidence for an ancient duplication of the entire yeast genome. Nature, 387(6634), 708-713. doi:10.1038/42711 es_ES
dc.description.references Yang, Z. (2007). PAML 4: Phylogenetic Analysis by Maximum Likelihood. Molecular Biology and Evolution, 24(8), 1586-1591. doi:10.1093/molbev/msm088 es_ES
dc.description.references Zhang, Z. H., Jhaveri, D. J., Marshall, V. M., Bauer, D. C., Edson, J., Narayanan, R. K., … Zhao, Q.-Y. (2014). A Comparative Study of Techniques for Differential Expression Analysis on RNA-Seq Data. PLoS ONE, 9(8), e103207. doi:10.1371/journal.pone.0103207 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem