- -

The Phenotypic Plasticity of Duplicated Genes in Saccharomyces cerevisiae and the Origin of Adaptations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The Phenotypic Plasticity of Duplicated Genes in Saccharomyces cerevisiae and the Origin of Adaptations

Mostrar el registro completo del ítem

Mattenberger, F.; Sabater-Muñoz, B.; Toft, C.; Fares Riaño, MA. (2017). The Phenotypic Plasticity of Duplicated Genes in Saccharomyces cerevisiae and the Origin of Adaptations. G3: Genes, Genomes, Genetics (Bethesda). 7(1):63-75. https://doi.org/10.1534/g3.116.035329

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/149920

Ficheros en el ítem

Metadatos del ítem

Título: The Phenotypic Plasticity of Duplicated Genes in Saccharomyces cerevisiae and the Origin of Adaptations
Autor: Mattenberger, Florian Sabater-Muñoz, B. Toft, C. Fares Riaño, Mario Ali
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Fecha difusión:
Resumen:
[EN] Gene and genome duplication are the major sources of biological innovations in plants and animals. Functional and transcriptional divergence between the copies after gene duplication has been considered the main driver ...[+]
Palabras clave: Evolutionary biology , Gene function , Small-scale duplicates , Whole-genome duplicates , Transcriptional profiles
Derechos de uso: Reconocimiento (by)
Fuente:
G3: Genes, Genomes, Genetics (Bethesda). (eissn: 2160-1836 )
DOI: 10.1534/g3.116.035329
Editorial:
The Genetics Society of America
Versión del editor: https://doi.org/10.1534/g3.116.035329
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//BFU2015-66073-P/ES/CARACTERIZANDO LOS MECANISMOS DE INNOVACION POR DUPLICACION GENICA/
info:eu-repo/grantAgreement/GVA//ACOMP%2F2015%2F026/
info:eu-repo/grantAgreement/MINECO//JCI-2012-14056/ES/JCI-2012-14056/
Agradecimientos:
This work was supported by a grant from the Spanish Ministerio de Economia y Competitividad (reference: BFU2015-66073-P) and a grant (reference: ACOMP/2015/026) from the local government Conselleria de Educacion Investigacion, ...[+]
Tipo: Artículo

References

Altschul, S. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389-3402. doi:10.1093/nar/25.17.3389

Anders, S., & Huber, W. (2010). Differential expression analysis for sequence count data. Genome Biology, 11(10). doi:10.1186/gb-2010-11-10-r106

Barkman, T., & Zhang, J. (2009). Evidence for escape from adaptive conflict? Nature, 462(7274), E1-E1. doi:10.1038/nature08663 [+]
Altschul, S. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389-3402. doi:10.1093/nar/25.17.3389

Anders, S., & Huber, W. (2010). Differential expression analysis for sequence count data. Genome Biology, 11(10). doi:10.1186/gb-2010-11-10-r106

Barkman, T., & Zhang, J. (2009). Evidence for escape from adaptive conflict? Nature, 462(7274), E1-E1. doi:10.1038/nature08663

Bellí, G., Molina, M. M., García-Martínez, J., Pérez-Ortín, J. E., & Herrero, E. (2004). Saccharomyces cerevisiaeGlutaredoxin 5-deficient Cells Subjected to Continuous Oxidizing Conditions Are Affected in the Expression of Specific Sets of Genes. Journal of Biological Chemistry, 279(13), 12386-12395. doi:10.1074/jbc.m311879200

Blanc, G., & Wolfe, K. H. (2004). Functional Divergence of Duplicated Genes Formed by Polyploidy during Arabidopsis Evolution. The Plant Cell, 16(7), 1679-1691. doi:10.1105/tpc.021410

Byrne, K. P. (2005). The Yeast Gene Order Browser: Combining curated homology and syntenic context reveals gene fate in polyploid species. Genome Research, 15(10), 1456-1461. doi:10.1101/gr.3672305

Carretero-Paulet, L., & Fares, M. A. (2012). Evolutionary Dynamics and Functional Specialization of Plant Paralogs Formed by Whole and Small-Scale Genome Duplications. Molecular Biology and Evolution, 29(11), 3541-3551. doi:10.1093/molbev/mss162

Causton, H. C., Ren, B., Koh, S. S., Harbison, C. T., Kanin, E., Jennings, E. G., … Young, R. A. (2001). Remodeling of Yeast Genome Expression in Response to Environmental Changes. Molecular Biology of the Cell, 12(2), 323-337. doi:10.1091/mbc.12.2.323

Conant, G. C., & Wolfe, K. H. (2006). Functional Partitioning of Yeast Co-Expression Networks after Genome Duplication. PLoS Biology, 4(4), e109. doi:10.1371/journal.pbio.0040109

Conant, G. C., & Wolfe, K. H. (2008). Turning a hobby into a job: How duplicated genes find new functions. Nature Reviews Genetics, 9(12), 938-950. doi:10.1038/nrg2482

Cormier, L., Barbey, R., & Kuras, L. (2010). Transcriptional plasticity through differential assembly of a multiprotein activation complex. Nucleic Acids Research, 38(15), 4998-5014. doi:10.1093/nar/gkq257

Costanzo, M., Baryshnikova, A., Bellay, J., Kim, Y., Spear, E. D., Sevier, C. S., … Mostafavi, S. (2010). The Genetic Landscape of a Cell. Science, 327(5964), 425-431. doi:10.1126/science.1180823

Cover T. M. Thomas J. A. , 2006  Elements of Information Theory. Ed. 2. Wiley-Interscience, New York.

Cui, L. (2006). Widespread genome duplications throughout the history of flowering plants. Genome Research, 16(6), 738-749. doi:10.1101/gr.4825606

Dean, E. J., Davis, J. C., Davis, R. W., & Petrov, D. A. (2008). Pervasive and Persistent Redundancy among Duplicated Genes in Yeast. PLoS Genetics, 4(7), e1000113. doi:10.1371/journal.pgen.1000113

DeLuna, A., Vetsigian, K., Shoresh, N., Hegreness, M., Colón-González, M., Chao, S., & Kishony, R. (2008). Exposing the fitness contribution of duplicated genes. Nature Genetics, 40(5), 676-681. doi:10.1038/ng.123

Dermitzakis, E. T., & Clark, A. G. (2001). Differential Selection After Duplication in Mammalian Developmental Genes. Molecular Biology and Evolution, 18(4), 557-562. doi:10.1093/oxfordjournals.molbev.a003835

Des Marais, D. L., & Rausher, M. D. (2008). Escape from adaptive conflict after duplication in an anthocyanin pathway gene. Nature, 454(7205), 762-765. doi:10.1038/nature07092

Draghi, J. A., Parsons, T. L., Wagner, G. P., & Plotkin, J. B. (2010). Mutational robustness can facilitate adaptation. Nature, 463(7279), 353-355. doi:10.1038/nature08694

Drummond, D. A., & Wilke, C. O. (2008). Mistranslation-Induced Protein Misfolding as a Dominant Constraint on Coding-Sequence Evolution. Cell, 134(2), 341-352. doi:10.1016/j.cell.2008.05.042

Drummond, D. A., Bloom, J. D., Adami, C., Wilke, C. O., & Arnold, F. H. (2005). Why highly expressed proteins evolve slowly. Proceedings of the National Academy of Sciences, 102(40), 14338-14343. doi:10.1073/pnas.0504070102

Drummond, D. A., Raval, A., & Wilke, C. O. (2005). A Single Determinant Dominates the Rate of Yeast Protein Evolution. Molecular Biology and Evolution, 23(2), 327-337. doi:10.1093/molbev/msj038

Fares, M. A. (2015). The origins of mutational robustness. Trends in Genetics, 31(7), 373-381. doi:10.1016/j.tig.2015.04.008

Fares, M. A., Keane, O. M., Toft, C., Carretero-Paulet, L., & Jones, G. W. (2013). The Roles of Whole-Genome and Small-Scale Duplications in the Functional Specialization of Saccharomyces cerevisiae Genes. PLoS Genetics, 9(1), e1003176. doi:10.1371/journal.pgen.1003176

Ferea, T. L., Botstein, D., Brown, P. O., & Rosenzweig, R. F. (1999). Systematic changes in gene expression patterns following adaptive evolution in yeast. Proceedings of the National Academy of Sciences, 96(17), 9721-9726. doi:10.1073/pnas.96.17.9721

Ferris, S. D., & Whitt, G. S. (1979). Evolution of the differential regulation of duplicate genes after polyploidization. Journal of Molecular Evolution, 12(4), 267-317. doi:10.1007/bf01732026

Francino, M. P. (2005). An adaptive radiation model for the origin of new gene functions. Nature Genetics, 37(6), 573-578. doi:10.1038/ng1579

Gibson, T. J., & Spring, J. (1998). Genetic redundancy in vertebrates: polyploidy and persistence of genes encoding multidomain proteins. Trends in Genetics, 14(2), 46-49. doi:10.1016/s0168-9525(97)01367-x

Gould, S. J., & Vrba, E. S. (1982). Exaptation—a Missing Term in the Science of Form. Paleobiology, 8(1), 4-15. doi:10.1017/s0094837300004310

Gu, Z., Nicolae, D., Lu, H. H.-S., & Li, W.-H. (2002). Rapid divergence in expression between duplicate genes inferred from microarray data. Trends in Genetics, 18(12), 609-613. doi:10.1016/s0168-9525(02)02837-8

Ha, M., Li, W.-H., & Chen, Z. J. (2007). External factors accelerate expression divergence between duplicate genes. Trends in Genetics, 23(4), 162-166. doi:10.1016/j.tig.2007.02.005

Ha, M., Kim, E.-D., & Chen, Z. J. (2009). Duplicate genes increase expression diversity in closely related species and allopolyploids. Proceedings of the National Academy of Sciences, 106(7), 2295-2300. doi:10.1073/pnas.0807350106

Halabi, N., Rivoire, O., Leibler, S., & Ranganathan, R. (2009). Protein Sectors: Evolutionary Units of Three-Dimensional Structure. Cell, 138(4), 774-786. doi:10.1016/j.cell.2009.07.038

He, X., & Zhang, J. (2005). Rapid Subfunctionalization Accompanied by Prolonged and Substantial Neofunctionalization in Duplicate Gene Evolution. Genetics, 169(2), 1157-1164. doi:10.1534/genetics.104.037051

Hoegg, S., Brinkmann, H., Taylor, J. S., & Meyer, A. (2004). Phylogenetic Timing of the Fish-Specific Genome Duplication Correlates with the Diversification of Teleost Fish. Journal of Molecular Evolution, 59(2), 190-203. doi:10.1007/s00239-004-2613-z

Hoffmann, F. G., Opazo, J. C., & Storz, J. F. (2011). Differential Loss and Retention of Cytoglobin, Myoglobin, and Globin-E during the Radiation of Vertebrates. Genome Biology and Evolution, 3, 588-600. doi:10.1093/gbe/evr055

Hoffmann, F. G., Opazo, J. C., Hoogewijs, D., Hankeln, T., Ebner, B., Vinogradov, S. N., … Storz, J. F. (2012). Evolution of the Globin Gene Family in Deuterostomes: Lineage-Specific Patterns of Diversification and Attrition. Molecular Biology and Evolution, 29(7), 1735-1745. doi:10.1093/molbev/mss018

Hoffmann, F. G., Opazo, J. C., & Storz, J. F. (2011). Whole-Genome Duplications Spurred the Functional Diversification of the Globin Gene Superfamily in Vertebrates. Molecular Biology and Evolution, 29(1), 303-312. doi:10.1093/molbev/msr207

Holub, E. B. (2001). The arms race is ancient history in Arabidopsis, the wildflower. Nature Reviews Genetics, 2(7), 516-527. doi:10.1038/35080508

Huminiecki, L. (2004). Divergence of Spatial Gene Expression Profiles Following Species-Specific Gene Duplications in Human and Mouse. Genome Research, 14(10a), 1870-1879. doi:10.1101/gr.2705204

Ideker, T. (2001). Integrated Genomic and Proteomic Analyses of a Systematically Perturbed Metabolic Network. Science, 292(5518), 929-934. doi:10.1126/science.292.5518.929

Ihmels, J., Collins, S. R., Schuldiner, M., Krogan, N. J., & Weissman, J. S. (2007). Backup without redundancy: genetic interactions reveal the cost of duplicate gene loss. Molecular Systems Biology, 3(1), 86. doi:10.1038/msb4100127

Innan, H., & Kondrashov, F. (2010). The evolution of gene duplications: classifying and distinguishing between models. Nature Reviews Genetics, 11(2), 97-108. doi:10.1038/nrg2689

Keane, O. M., Toft, C., Carretero-Paulet, L., Jones, G. W., & Fares, M. A. (2014). Preservation of genetic and regulatory robustness in ancient gene duplicates ofSaccharomyces cerevisiae. Genome Research, 24(11), 1830-1841. doi:10.1101/gr.176792.114

Kim, S., Yoo, M.-J., Albert, V. A., Farris, J. S., Soltis, P. S., & Soltis, D. E. (2004). Phylogeny and diversification of B-function MADS-box genes in angiosperms: evolutionary and functional implications of a 260-million-year-old duplication. American Journal of Botany, 91(12), 2102-2118. doi:10.3732/ajb.91.12.2102

Landry, C. R., Oh, J., Hartl, D. L., & Cavalieri, D. (2006). Genome-wide scan reveals that genetic variation for transcriptional plasticity in yeast is biased towards multi-copy and dispensable genes. Gene, 366(2), 343-351. doi:10.1016/j.gene.2005.10.042

Lespinet, O. (2002). The Role of Lineage-Specific Gene Family Expansion in the Evolution of Eukaryotes. Genome Research, 12(7), 1048-1059. doi:10.1101/gr.174302

Li, W.-H., Yang, J., & Gu, X. (2005). Expression divergence between duplicate genes. Trends in Genetics, 21(11), 602-607. doi:10.1016/j.tig.2005.08.006

Linde, J., Duggan, S., Weber, M., Horn, F., Sieber, P., Hellwig, D., … Kurzai, O. (2015). Defining the transcriptomic landscape of Candida glabrata by RNA-Seq. Nucleic Acids Research, 43(3), 1392-1406. doi:10.1093/nar/gku1357

Lohse, M., Bolger, A. M., Nagel, A., Fernie, A. R., Lunn, J. E., Stitt, M., & Usadel, B. (2012). RobiNA: a user-friendly, integrated software solution for RNA-Seq-based transcriptomics. Nucleic Acids Research, 40(W1), W622-W627. doi:10.1093/nar/gks540

Lynch, M. (2000). The Evolutionary Fate and Consequences of Duplicate Genes. Science, 290(5494), 1151-1155. doi:10.1126/science.290.5494.1151

Lynch, M., & Conery, J. S. (2003). Journal of Structural and Functional Genomics, 3(1/4), 35-44. doi:10.1023/a:1022696612931

Lynch, M., & Katju, V. (2004). The altered evolutionary trajectories of gene duplicates. Trends in Genetics, 20(11), 544-549. doi:10.1016/j.tig.2004.09.001

Marcet-Houben, M., & Gabaldón, T. (2015). Beyond the Whole-Genome Duplication: Phylogenetic Evidence for an Ancient Interspecies Hybridization in the Baker’s Yeast Lineage. PLOS Biology, 13(8), e1002220. doi:10.1371/journal.pbio.1002220

Musso, G., Costanzo, M., Huangfu, M., Smith, A. M., Paw, J., San Luis, B.-J., … Zhang, Z. (2008). The extensive and condition-dependent nature of epistasis among whole-genome duplicates in yeast. Genome Research, 18(7), 1092-1099. doi:10.1101/gr.076174.108

Ohler, U., & Niemann, H. (2001). Identification and analysis of eukaryotic promoters: recent computational approaches. Trends in Genetics, 17(2), 56-60. doi:10.1016/s0168-9525(00)02174-0

Ohno S. , 1970  Evolution by Gene Duplication. Springer Verlag, New York.

Ohno, S. (1999). Gene duplication and the uniqueness of vertebrate genomes circa 1970–1999. Seminars in Cell & Developmental Biology, 10(5), 517-522. doi:10.1006/scdb.1999.0332

Otto, S. P., & Whitton, J. (2000). Polyploid Incidence and Evolution. Annual Review of Genetics, 34(1), 401-437. doi:10.1146/annurev.genet.34.1.401

Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2009). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26(1), 139-140. doi:10.1093/bioinformatics/btp616

Rocha, E. P. C., & Danchin, A. (2004). An Analysis of Determinants of Amino Acids Substitution Rates in Bacterial Proteins. Molecular Biology and Evolution, 21(1), 108-116. doi:10.1093/molbev/msh004

Ruiz-González, M. X., & Fares, M. A. (2013). Coevolution analyses illuminate the dependencies between amino acid sites in the chaperonin system GroES-L. BMC Evolutionary Biology, 13(1), 156. doi:10.1186/1471-2148-13-156

Steinmetz, L. M., Scharfe, C., Deutschbauer, A. M., Mokranjac, D., Herman, Z. S., Jones, T., … Davis, R. W. (2002). Systematic screen for human disease genes in yeast. Nature Genetics, 31(4), 400-404. doi:10.1038/ng929

Stern, S., Dror, T., Stolovicki, E., Brenner, N., & Braun, E. (2007). Genome‐wide transcriptional plasticity underlies cellular adaptation to novel challenge. Molecular Systems Biology, 3(1), 106. doi:10.1038/msb4100147

Storz, J. F., Opazo, J. C., & Hoffmann, F. G. (2011). Phylogenetic diversification of the globin gene superfamily in chordates. IUBMB Life, 63(5), 313-322. doi:10.1002/iub.482

Storz, J. F., Opazo, J. C., & Hoffmann, F. G. (2013). Gene duplication, genome duplication, and the functional diversification of vertebrate globins. Molecular Phylogenetics and Evolution, 66(2), 469-478. doi:10.1016/j.ympev.2012.07.013

Taylor, J. S., & Raes, J. (2004). Duplication and Divergence: The Evolution of New Genes and Old Ideas. Annual Review of Genetics, 38(1), 615-643. doi:10.1146/annurev.genet.38.072902.092831

Thompson, D. A., Roy, S., Chan, M., Styczynsky, M. P., Pfiffner, J., French, C., … Regev, A. (2013). Evolutionary principles of modular gene regulation in yeasts. eLife, 2. doi:10.7554/elife.00603

Tong, A. H. Y. (2001). Systematic Genetic Analysis with Ordered Arrays of Yeast Deletion Mutants. Science, 294(5550), 2364-2368. doi:10.1126/science.1065810

VanderSluis, B., Bellay, J., Musso, G., Costanzo, M., Papp, B., Vizeacoumar, F. J., … Myers, C. L. (2010). Genetic interactions reveal the evolutionary trajectories of duplicate genes. Molecular Systems Biology, 6(1), 429. doi:10.1038/msb.2010.82

VEITIA, R. A. (2003). Nonlinear Effects in Macromolecular Assembly and Dosage Sensitivity. Journal of Theoretical Biology, 220(1), 19-25. doi:10.1006/jtbi.2003.3105

VEITIA, R. A. (2003). A sigmoidal transcriptional response: cooperativity, synergy and dosage effects. Biological Reviews of the Cambridge Philosophical Society, 78(1), 149-170. doi:10.1017/s1464793102006036

Wagner, A. (2000). Decoupled evolution of coding region and mRNA expression patterns after gene duplication: Implications for the neutralist-selectionist debate. Proceedings of the National Academy of Sciences, 97(12), 6579-6584. doi:10.1073/pnas.110147097

Wagner, A. (2000). Robustness against mutations in genetic networks of yeast. Nature Genetics, 24(4), 355-361. doi:10.1038/74174

Wagner, A. (2005). Robustness, evolvability, and neutrality. FEBS Letters, 579(8), 1772-1778. doi:10.1016/j.febslet.2005.01.063

Wang, Y., Wang, X., & Paterson, A. H. (2012). Genome and gene duplications and gene expression divergence: a view from plants. Annals of the New York Academy of Sciences, 1256(1), 1-14. doi:10.1111/j.1749-6632.2011.06384.x

Wendel, J. F. (2000). Plant Molecular Biology, 42(1), 225-249. doi:10.1023/a:1006392424384

Wilke, C. O., & Drummond, D. A. (2006). Population Genetics of Translational Robustness. Genetics, 173(1), 473-481. doi:10.1534/genetics.105.051300

Wolfe, K. H. (2015). Origin of the Yeast Whole-Genome Duplication. PLOS Biology, 13(8), e1002221. doi:10.1371/journal.pbio.1002221

Wolfe, K. H., & Shields, D. C. (1997). Molecular evidence for an ancient duplication of the entire yeast genome. Nature, 387(6634), 708-713. doi:10.1038/42711

Yang, Z. (2007). PAML 4: Phylogenetic Analysis by Maximum Likelihood. Molecular Biology and Evolution, 24(8), 1586-1591. doi:10.1093/molbev/msm088

Zhang, Z. H., Jhaveri, D. J., Marshall, V. M., Bauer, D. C., Edson, J., Narayanan, R. K., … Zhao, Q.-Y. (2014). A Comparative Study of Techniques for Differential Expression Analysis on RNA-Seq Data. PLoS ONE, 9(8), e103207. doi:10.1371/journal.pone.0103207

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem