- -

The grapevine (Vitis vinifera) LysM receptor kinases VvLYK1-1 and VvLYK1-2 mediate chitooligosaccharide-triggered immunity

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by


The grapevine (Vitis vinifera) LysM receptor kinases VvLYK1-1 and VvLYK1-2 mediate chitooligosaccharide-triggered immunity

Show full item record

Brule, D.; Villano, C.; Davies, L.; Trda, L.; Clavierie, J.; Heloir, M.; Chiltz, A.... (2018). The grapevine (Vitis vinifera) LysM receptor kinases VvLYK1-1 and VvLYK1-2 mediate chitooligosaccharide-triggered immunity. Plant Biotechnology Journal. 17(4):812-825. https://doi.org/10.1111/pbi.13017

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/149927

Files in this item

Item Metadata

Title: The grapevine (Vitis vinifera) LysM receptor kinases VvLYK1-1 and VvLYK1-2 mediate chitooligosaccharide-triggered immunity
Author: Brule, D. Villano, C. Davies, L. Trda, L. Clavierie, J. Heloir, MC Chiltz, A. Adrian, M. Darblade, B. Tornero Feliciano, Pablo Stransfeld, L. Boutrot, F. Zipfel, C. Dry, I. Poinssot, B.
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Issued date:
[EN] Chitin, a major component of fungal cell walls, is a well-known pathogen-associated molecular pattern (PAMP) that triggers defense responses in several mammal and plant species. Here, we show that two chitooligosaccharides, ...[+]
Subjects: Pathogen-associated molecular pattern , Pattern recognition receptor , Vitis vinifera , Immune responses , Erysiphe necator , Resistance
Copyrigths: Reconocimiento (by)
Plant Biotechnology Journal. (issn: 1467-7644 )
DOI: 10.1111/pbi.13017
Blackwell Publishing
Publisher version: https://doi.org/10.1111/pbi.13017
Project ID:
This work has been financially supported by ANR (PATRIC project, grant ANR-13-KBBE-0001) (to BP), the Regional Council of Bourgogne Franche-Comte (PARI grant 2016-9201AAO050S016 36 and FEDER grant BG0005888) and INRA for ...[+]
Type: Artículo


Akamatsu, A., Wong, H. L., Fujiwara, M., Okuda, J., Nishide, K., Uno, K., … Shimamoto, K. (2013). An OsCEBiP/OsCERK1-OsRacGEF1-OsRac1 Module Is an Essential Early Component of Chitin-Induced Rice Immunity. Cell Host & Microbe, 13(4), 465-476. doi:10.1016/j.chom.2013.03.007

Albert, P., Miya, A., Hiratsuka, K., Kawakami, N., & Shibuya, N. (2006). A high-throughput evaluation system for Arabidopsis mutants for defense signaling. Plant Biotechnology, 23(5), 459-466. doi:10.5511/plantbiotechnology.23.459

Ao, Y., Li, Z., Feng, D., Xiong, F., Liu, J., Li, J.-F., … Wang, H.-B. (2014). OsCERK1 and OsRLCK176 play important roles in peptidoglycan and chitin signaling in rice innate immunity. The Plant Journal, 80(6), 1072-1084. doi:10.1111/tpj.12710 [+]
Akamatsu, A., Wong, H. L., Fujiwara, M., Okuda, J., Nishide, K., Uno, K., … Shimamoto, K. (2013). An OsCEBiP/OsCERK1-OsRacGEF1-OsRac1 Module Is an Essential Early Component of Chitin-Induced Rice Immunity. Cell Host & Microbe, 13(4), 465-476. doi:10.1016/j.chom.2013.03.007

Albert, P., Miya, A., Hiratsuka, K., Kawakami, N., & Shibuya, N. (2006). A high-throughput evaluation system for Arabidopsis mutants for defense signaling. Plant Biotechnology, 23(5), 459-466. doi:10.5511/plantbiotechnology.23.459

Ao, Y., Li, Z., Feng, D., Xiong, F., Liu, J., Li, J.-F., … Wang, H.-B. (2014). OsCERK1 and OsRLCK176 play important roles in peptidoglycan and chitin signaling in rice innate immunity. The Plant Journal, 80(6), 1072-1084. doi:10.1111/tpj.12710

Aziz, A., Poinssot, B., Daire, X., Adrian, M., Bézier, A., Lambert, B., … Pugin, A. (2003). Laminarin Elicits Defense Responses in Grapevine and Induces Protection Against Botrytis cinerea and Plasmopara viticola. Molecular Plant-Microbe Interactions®, 16(12), 1118-1128. doi:10.1094/mpmi.2003.16.12.1118

Aziz, A., Trotel-Aziz, P., Dhuicq, L., Jeandet, P., Couderchet, M., & Vernet, G. (2006). Chitosan Oligomers and Copper Sulfate Induce Grapevine Defense Reactions and Resistance to Gray Mold and Downy Mildew. Phytopathology®, 96(11), 1188-1194. doi:10.1094/phyto-96-1188

Bleckmann, A., Weidtkamp-Peters, S., Seidel, C. A. M., & Simon, R. (2009). Stem Cell Signaling in Arabidopsis Requires CRN to Localize CLV2 to the Plasma Membrane. Plant Physiology, 152(1), 166-176. doi:10.1104/pp.109.149930

Boller, T., & Felix, G. (2009). A Renaissance of Elicitors: Perception of Microbe-Associated Molecular Patterns and Danger Signals by Pattern-Recognition Receptors. Annual Review of Plant Biology, 60(1), 379-406. doi:10.1146/annurev.arplant.57.032905.105346

Boutrot, F., & Zipfel, C. (2017). Function, Discovery, and Exploitation of Plant Pattern Recognition Receptors for Broad-Spectrum Disease Resistance. Annual Review of Phytopathology, 55(1), 257-286. doi:10.1146/annurev-phyto-080614-120106

Brandizzi, F., Irons, S. L., Johansen, J., Kotzer, A., & Neumann, U. (2004). GFP is the way to glow: bioimaging of the plant endomembrane system. Journal of Microscopy, 214(2), 138-158. doi:10.1111/j.0022-2720.2004.01334.x

Van den Burg, H. A., Harrison, S. J., Joosten, M. H. A. J., Vervoort, J., & de Wit, P. J. G. M. (2006). Cladosporium fulvum Avr4 Protects Fungal Cell Walls Against Hydrolysis by Plant Chitinases Accumulating During Infection. Molecular Plant-Microbe Interactions®, 19(12), 1420-1430. doi:10.1094/mpmi-19-1420

Cabrera, J. C., Messiaen, J., Cambier, P., & Van Cutsem, P. (2006). Size, acetylation and concentration of chitooligosaccharide elicitors determine the switch from defence involving PAL activation to cell death and water peroxide production in Arabidopsis cell suspensions. Physiologia Plantarum, 127(1), 44-56. doi:10.1111/j.1399-3054.2006.00677.x

Cao, Y., Liang, Y., Tanaka, K., Nguyen, C. T., Jedrzejczak, R. P., Joachimiak, A., & Stacey, G. (2014). The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin-induced complex with related kinase CERK1. eLife, 3. doi:10.7554/elife.03766

Clough, S. J., & Bent, A. F. (1998). Floral dip: a simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana. The Plant Journal, 16(6), 735-743. doi:10.1046/j.1365-313x.1998.00343.x

Czechowski, T., Stitt, M., Altmann, T., Udvardi, M. K., & Scheible, W.-R. (2005). Genome-Wide Identification and Testing of Superior Reference Genes for Transcript Normalization in Arabidopsis. Plant Physiology, 139(1), 5-17. doi:10.1104/pp.105.063743

Dodds, P. N., & Rathjen, J. P. (2010). Plant immunity: towards an integrated view of plant–pathogen interactions. Nature Reviews Genetics, 11(8), 539-548. doi:10.1038/nrg2812

Donald, T. M., Pellerone, F., Adam-Blondon, A.-F., Bouquet, A., Thomas, M. R., & Dry, I. B. (2002). Identification of resistance gene analogs linked to a powdery mildew resistance locus in grapevine. Theoretical and Applied Genetics, 104(4), 610-618. doi:10.1007/s00122-001-0768-1

Dubreuil-Maurizi, C., Trouvelot, S., Frettinger, P., Pugin, A., Wendehenne, D., & Poinssot, B. (2010). β-Aminobutyric Acid Primes an NADPH Oxidase–Dependent Reactive Oxygen Species Production During Grapevine-Triggered Immunity. Molecular Plant-Microbe Interactions®, 23(8), 1012-1021. doi:10.1094/mpmi-23-8-1012

Van Esse, H. P., Bolton, M. D., Stergiopoulos, I., de Wit, P. J. G. M., & Thomma, B. P. H. J. (2007). The Chitin-Binding Cladosporium fulvum Effector Protein Avr4 Is a Virulence Factor. Molecular Plant-Microbe Interactions®, 20(9), 1092-1101. doi:10.1094/mpmi-20-9-1092

Van Esse, H. P., van’t Klooster, J. W., Bolton, M. D., Yadeta, K. A., van Baarlen, P., Boeren, S., … Thomma, B. P. H. J. (2008). The Cladosporium fulvum Virulence Protein Avr2 Inhibits Host Proteases Required for Basal Defense. The Plant Cell, 20(7), 1948-1963. doi:10.1105/tpc.108.059394

Feechan, A., Jermakow, A. M., Ivancevic, A., Godfrey, D., Pak, H., Panstruga, R., & Dry, I. B. (2013). Host Cell Entry of Powdery Mildew Is Correlated with Endosomal Transport of Antagonistically Acting VvPEN1 and VvMLO to the Papilla. Molecular Plant-Microbe Interactions®, 26(10), 1138-1150. doi:10.1094/mpmi-04-13-0091-r

Felix, G., Baureithel, K., & Boller, T. (1998). Desensitization of the Perception System for Chitin Fragments in Tomato Cells. Plant Physiology, 117(2), 643-650. doi:10.1104/pp.117.2.643

Gauthier, A., Trouvelot, S., Kelloniemi, J., Frettinger, P., Wendehenne, D., Daire, X., … Poinssot, B. (2014). The Sulfated Laminarin Triggers a Stress Transcriptome before Priming the SA- and ROS-Dependent Defenses during Grapevine’s Induced Resistance against Plasmopara viticola. PLoS ONE, 9(2), e88145. doi:10.1371/journal.pone.0088145

Gimenez-Ibanez, S., Ntoukakis, V., & Rathjen, J. P. (2009). The LysM receptor kinase CERK1 mediates bacterial perception in Arabidopsis. Plant Signaling & Behavior, 4(6), 539-541. doi:10.4161/psb.4.6.8697

Gleave, A. P. (1992). A versatile binary vector system with a T-DNA organisational structure conducive to efficient integration of cloned DNA into the plant genome. Plant Molecular Biology, 20(6), 1203-1207. doi:10.1007/bf00028910

Gong, B.-Q., Xue, J., Zhang, N., Xu, L., Yao, X., Yang, Q.-J., … Li, J.-F. (2017). Rice Chitin Receptor OsCEBiP Is Not a Transmembrane Protein but Targets the Plasma Membrane via a GPI Anchor. Molecular Plant, 10(5), 767-770. doi:10.1016/j.molp.2016.12.005

Gubaeva, E., Gubaev, A., Melcher, R. L. J., Cord-Landwehr, S., Singh, R., El Gueddari, N. E., & Moerschbacher, B. M. (2018). ‘Slipped Sandwich’ Model for Chitin and Chitosan Perception in Arabidopsis. Molecular Plant-Microbe Interactions®, 31(11), 1145-1153. doi:10.1094/mpmi-04-18-0098-r

Gust, A. A., Willmann, R., Desaki, Y., Grabherr, H. M., & Nürnberger, T. (2012). Plant LysM proteins: modules mediating symbiosis and immunity. Trends in Plant Science, 17(8), 495-502. doi:10.1016/j.tplants.2012.04.003

Hayafune, M., Berisio, R., Marchetti, R., Silipo, A., Kayama, M., Desaki, Y., … Shibuya, N. (2014). Chitin-induced activation of immune signaling by the rice receptor CEBiP relies on a unique sandwich-type dimerization. Proceedings of the National Academy of Sciences, 111(3), E404-E413. doi:10.1073/pnas.1312099111

Heath, M. C. (2000). Nonhost resistance and nonspecific plant defenses. Current Opinion in Plant Biology, 3(4), 315-319. doi:10.1016/s1369-5266(00)00087-x

(2007). The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature, 449(7161), 463-467. doi:10.1038/nature06148

Jones, J. D. G., & Dangl, J. L. (2006). The plant immune system. Nature, 444(7117), 323-329. doi:10.1038/nature05286

Kaku, H., Nishizawa, Y., Ishii-Minami, N., Akimoto-Tomiyama, C., Dohmae, N., Takio, K., … Shibuya, N. (2006). Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proceedings of the National Academy of Sciences, 103(29), 11086-11091. doi:10.1073/pnas.0508882103

Karimi, M., Inzé, D., & Depicker, A. (2002). GATEWAY™ vectors for Agrobacterium-mediated plant transformation. Trends in Plant Science, 7(5), 193-195. doi:10.1016/s1360-1385(02)02251-3

Kelloniemi, J., Trouvelot, S., Héloir, M.-C., Simon, A., Dalmais, B., Frettinger, P., … Viaud, M. (2015). Analysis of the Molecular Dialogue Between Gray Mold (Botrytis cinerea) and Grapevine (Vitis vinifera) Reveals a Clear Shift in Defense Mechanisms During Berry Ripening. Molecular Plant-Microbe Interactions®, 28(11), 1167-1180. doi:10.1094/mpmi-02-15-0039-r

Kim Khiook, I. L., Schneider, C., Heloir, M.-C., Bois, B., Daire, X., Adrian, M., & Trouvelot, S. (2013). Image analysis methods for assessment of H2O2 production and Plasmopara viticola development in grapevine leaves: Application to the evaluation of resistance to downy mildew. Journal of Microbiological Methods, 95(2), 235-244. doi:10.1016/j.mimet.2013.08.012

Koch, E., & Slusarenko, A. (1990). Arabidopsis is susceptible to infection by a downy mildew fungus. The Plant Cell, 2(5), 437-445. doi:10.1105/tpc.2.5.437

Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution, 33(7), 1870-1874. doi:10.1093/molbev/msw054

Lacombe, S., Rougon-Cardoso, A., Sherwood, E., Peeters, N., Dahlbeck, D., van Esse, H. P., … Zipfel, C. (2010). Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance. Nature Biotechnology, 28(4), 365-369. doi:10.1038/nbt.1613

Lee, S., Whitaker, V. M., & Hutton, S. F. (2016). Mini Review: Potential Applications of Non-host Resistance for Crop Improvement. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.00997

Liu, T., Liu, Z., Song, C., Hu, Y., Han, Z., She, J., … Chai, J. (2012). Chitin-Induced Dimerization Activates a Plant Immune Receptor. Science, 336(6085), 1160-1164. doi:10.1126/science.1218867

Liu, S., Wang, J., Han, Z., Gong, X., Zhang, H., & Chai, J. (2016). Molecular Mechanism for Fungal Cell Wall Recognition by Rice Chitin Receptor OsCEBiP. Structure, 24(7), 1192-1200. doi:10.1016/j.str.2016.04.014

Livak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25(4), 402-408. doi:10.1006/meth.2001.1262

Lloyd, S. R., Schoonbeek, H., Trick, M., Zipfel, C., & Ridout, C. J. (2014). Methods to Study PAMP-Triggered Immunity in Brassica Species. Molecular Plant-Microbe Interactions®, 27(3), 286-295. doi:10.1094/mpmi-05-13-0154-fi

Lu, F., Wang, H., Wang, S., Jiang, W., Shan, C., Li, B., … Sun, W. (2015). Enhancement of innate immune system in monocot rice by transferring the dicotyledonous elongation factor Tu receptor EFR. Journal of Integrative Plant Biology, 57(7), 641-652. doi:10.1111/jipb.12306

Mentlak, T. A., Kombrink, A., Shinya, T., Ryder, L. S., Otomo, I., Saitoh, H., … Talbot, N. J. (2012). Effector-Mediated Suppression of Chitin-Triggered Immunity by Magnaporthe oryzae Is Necessary for Rice Blast Disease. The Plant Cell, 24(1), 322-335. doi:10.1105/tpc.111.092957

Miya, A., Albert, P., Shinya, T., Desaki, Y., Ichimura, K., Shirasu, K., … Shibuya, N. (2007). CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proceedings of the National Academy of Sciences, 104(49), 19613-19618. doi:10.1073/pnas.0705147104

Paparella, C., Savatin, D. V., Marti, L., De Lorenzo, G., & Ferrari, S. (2014). The Arabidopsis LYSIN MOTIF-CONTAINING RECEPTOR-LIKE KINASE3 Regulates the Cross Talk between Immunity and Abscisic Acid Responses. Plant Physiology, 165(1), 262-276. doi:10.1104/pp.113.233759

Petutschnig, E. K., Jones, A. M. E., Serazetdinova, L., Lipka, U., & Lipka, V. (2010). The Lysin Motif Receptor-like Kinase (LysM-RLK) CERK1 Is a Major Chitin-binding Protein inArabidopsis thalianaand Subject to Chitin-induced Phosphorylation. Journal of Biological Chemistry, 285(37), 28902-28911. doi:10.1074/jbc.m110.116657

Pietraszewska-Bogiel, A., Lefebvre, B., Koini, M. A., Klaus-Heisen, D., Takken, F. L. W., Geurts, R., … Gadella, T. W. J. (2013). Interaction of Medicago truncatula Lysin Motif Receptor-Like Kinases, NFP and LYK3, Produced in Nicotiana benthamiana Induces Defence-Like Responses. PLoS ONE, 8(6), e65055. doi:10.1371/journal.pone.0065055

Piquerez, S. J. M., Harvey, S. E., Beynon, J. L., & Ntoukakis, V. (2014). Improving crop disease resistance: lessons from research on Arabidopsis and tomato. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00671

Poinssot, B., Vandelle, E., Bentéjac, M., Adrian, M., Levis, C., Brygoo, Y., … Pugin, A. (2003). The Endopolygalacturonase 1 from Botrytis cinerea Activates Grapevine Defense Reactions Unrelated to Its Enzymatic Activity. Molecular Plant-Microbe Interactions®, 16(6), 553-564. doi:10.1094/mpmi.2003.16.6.553

Povero, G., Loreti, E., Pucciariello, C., Santaniello, A., Di Tommaso, D., Di Tommaso, G., … Perata, P. (2011). Transcript profiling of chitosan-treated Arabidopsis seedlings. Journal of Plant Research, 124(5), 619-629. doi:10.1007/s10265-010-0399-1

Qiu, W., Feechan, A., & Dry, I. (2015). Current understanding of grapevine defense mechanisms against the biotrophic fungus (Erysiphe necator), the causal agent of powdery mildew disease. Horticulture Research, 2(1). doi:10.1038/hortres.2015.20

Reid, K. E., Olsson, N., Schlosser, J., Peng, F., & Lund, S. T. (2006). BMC Plant Biology, 6(1), 27. doi:10.1186/1471-2229-6-27

Schoonbeek, H., Wang, H.-H., Stefanato, F. L., Craze, M., Bowden, S., Wallington, E., … Ridout, C. J. (2015). Arabidopsis EF-Tu receptor enhances bacterial disease resistance in transgenic wheat. New Phytologist, 206(2), 606-613. doi:10.1111/nph.13356

Segonzac, C., Feike, D., Gimenez-Ibanez, S., Hann, D. R., Zipfel, C., & Rathjen, J. P. (2011). Hierarchy and Roles of Pathogen-Associated Molecular Pattern-Induced Responses in Nicotiana benthamiana. Plant Physiology, 156(2), 687-699. doi:10.1104/pp.110.171249

Shimizu, T., Nakano, T., Takamizawa, D., Desaki, Y., Ishii-Minami, N., Nishizawa, Y., … Shibuya, N. (2010). Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. The Plant Journal, 64(2), 204-214. doi:10.1111/j.1365-313x.2010.04324.x

Shinya, T., Nakagawa, T., Kaku, H., & Shibuya, N. (2015). Chitin-mediated plant–fungal interactions: catching, hiding and handshaking. Current Opinion in Plant Biology, 26, 64-71. doi:10.1016/j.pbi.2015.05.032

Steimetz, E., Trouvelot, S., Gindro, K., Bordier, A., Poinssot, B., Adrian, M., & Daire, X. (2012). Influence of leaf age on induced resistance in grapevine against Plasmopara viticola. Physiological and Molecular Plant Pathology, 79, 89-96. doi:10.1016/j.pmpp.2012.05.004

TANABE, S., OKADA, M., JIKUMARU, Y., YAMANE, H., KAKU, H., SHIBUYA, N., & MINAMI, E. (2006). Induction of Resistance against Rice Blast Fungus in Rice Plants Treated with a Potent Elicitor,N-Acetylchitooligosaccharide. Bioscience, Biotechnology, and Biochemistry, 70(7), 1599-1605. doi:10.1271/bbb.50677

Trdá, L., Fernandez, O., Boutrot, F., Héloir, M.-C., Kelloniemi, J., Daire, X., … Poinssot, B. (2013). The grapevine flagellin receptor VvFLS2 differentially recognizes flagellin-derived epitopes from the endophytic growth-promoting bacteriumBurkholderia phytofirmansand plant pathogenic bacteria. New Phytologist, 201(4), 1371-1384. doi:10.1111/nph.12592

Trdá, L., Boutrot, F., Claverie, J., Brulé, D., Dorey, S., & Poinssot, B. (2015). Perception of pathogenic or beneficial bacteria and their evasion of host immunity: pattern recognition receptors in the frontline. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00219

Trouvelot, S., Héloir, M.-C., Poinssot, B., Gauthier, A., Paris, F., Guillier, C., … Adrian, M. (2014). Carbohydrates in plant immunity and plant protection: roles and potential application as foliar sprays. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00592

Vandelle, E., Poinssot, B., Wendehenne, D., Bentéjac, M., & Pugin, A. (2006). Integrated Signaling Network Involving Calcium, Nitric Oxide, and Active Oxygen Species but Not Mitogen-Activated Protein Kinases in BcPG1-Elicited Grapevine Defenses. Molecular Plant-Microbe Interactions®, 19(4), 429-440. doi:10.1094/mpmi-19-0429

Vander, P., Vårum, K. M., Domard, A., Eddine El Gueddari, N., & Moerschbacher, B. M. (1998). Comparison of the Ability of Partially N-Acetylated Chitosans and Chitooligosaccharides to Elicit Resistance Reactions in Wheat Leaves. Plant Physiology, 118(4), 1353-1359. doi:10.1104/pp.118.4.1353

Walters, D. R., Ratsep, J., & Havis, N. D. (2013). Controlling crop diseases using induced resistance: challenges for the future. Journal of Experimental Botany, 64(5), 1263-1280. doi:10.1093/jxb/ert026

Wan, J., Zhang, X.-C., Neece, D., Ramonell, K. M., Clough, S., Kim, S., … Stacey, G. (2008). A LysM Receptor-Like Kinase Plays a Critical Role in Chitin Signaling and Fungal Resistance in Arabidopsis. The Plant Cell, 20(2), 471-481. doi:10.1105/tpc.107.056754

Wiesel, L., Newton, A. C., Elliott, I., Booty, D., Gilroy, E. M., Birch, P. R. J., & Hein, I. (2014). Molecular effects of resistance elicitors from biological origin and their potential for crop protection. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00655

Williams, S. J., Yin, L., Foley, G., Casey, L. W., Outram, M. A., Ericsson, D. J., … Kobe, B. (2016). Structure and Function of the TIR Domain from the Grape NLR Protein RPV1. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.01850

Willmann, R., Lajunen, H. M., Erbs, G., Newman, M.-A., Kolb, D., Tsuda, K., … Nurnberger, T. (2011). Arabidopsis lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection. Proceedings of the National Academy of Sciences, 108(49), 19824-19829. doi:10.1073/pnas.1112862108

Xu, J., Xie, J., Yan, C., Zou, X., Ren, D., & Zhang, S. (2013). A chemical genetic approach demonstrates that MPK3/MPK6 activation and NADPH oxidase-mediated oxidative burst are two independent signaling events in plant immunity. The Plant Journal, 77(2), 222-234. doi:10.1111/tpj.12382

Yamaguchi, K., Yamada, K., Ishikawa, K., Yoshimura, S., Hayashi, N., Uchihashi, K., … Kawasaki, T. (2013). A Receptor-like Cytoplasmic Kinase Targeted by a Plant Pathogen Effector Is Directly Phosphorylated by the Chitin Receptor and Mediates Rice Immunity. Cell Host & Microbe, 13(3), 347-357. doi:10.1016/j.chom.2013.02.007

Yin, H., Du, Y., & Dong, Z. (2016). Chitin Oligosaccharide and Chitosan Oligosaccharide: Two Similar but Different Plant Elicitors. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.00522

Yu, X., Feng, B., He, P., & Shan, L. (2017). From Chaos to Harmony: Responses and Signaling upon Microbial Pattern Recognition. Annual Review of Phytopathology, 55(1), 109-137. doi:10.1146/annurev-phyto-080516-035649

Zeng, L., Velásquez, A. C., Munkvold, K. R., Zhang, J., & Martin, G. B. (2011). A tomato LysM receptor-like kinase promotes immunity and its kinase activity is inhibited by AvrPtoB. The Plant Journal, 69(1), 92-103. doi:10.1111/j.1365-313x.2011.04773.x

Zhang, X.-C., Cannon, S. B., & Stacey, G. (2009). Evolutionary genomics of LysM genes in land plants. BMC Evolutionary Biology, 9(1), 183. doi:10.1186/1471-2148-9-183

Zipfel, C., Kunze, G., Chinchilla, D., Caniard, A., Jones, J. D. G., Boller, T., & Felix, G. (2006). Perception of the Bacterial PAMP EF-Tu by the Receptor EFR Restricts Agrobacterium-Mediated Transformation. Cell, 125(4), 749-760. doi:10.1016/j.cell.2006.03.037


This item appears in the following Collection(s)

Show full item record