- -

The grapevine (Vitis vinifera) LysM receptor kinases VvLYK1-1 and VvLYK1-2 mediate chitooligosaccharide-triggered immunity

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The grapevine (Vitis vinifera) LysM receptor kinases VvLYK1-1 and VvLYK1-2 mediate chitooligosaccharide-triggered immunity

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Brule, D. es_ES
dc.contributor.author Villano, C. es_ES
dc.contributor.author Davies, L. es_ES
dc.contributor.author Trda, L. es_ES
dc.contributor.author Clavierie, J. es_ES
dc.contributor.author Heloir, MC es_ES
dc.contributor.author Chiltz, A. es_ES
dc.contributor.author Adrian, M. es_ES
dc.contributor.author Darblade, B. es_ES
dc.contributor.author Tornero Feliciano, Pablo es_ES
dc.contributor.author Stransfeld, L. es_ES
dc.contributor.author Boutrot, F. es_ES
dc.contributor.author Zipfel, C. es_ES
dc.contributor.author Dry, I. es_ES
dc.contributor.author Poinssot, B. es_ES
dc.date.accessioned 2020-09-12T03:34:16Z
dc.date.available 2020-09-12T03:34:16Z
dc.date.issued 2018-10-22 es_ES
dc.identifier.issn 1467-7644 es_ES
dc.identifier.uri http://hdl.handle.net/10251/149927
dc.description.abstract [EN] Chitin, a major component of fungal cell walls, is a well-known pathogen-associated molecular pattern (PAMP) that triggers defense responses in several mammal and plant species. Here, we show that two chitooligosaccharides, chitin and chitosan, act as PAMPs in grapevine (Vitis vinifera) as they elicit immune signalling events, defense gene expression and resistance against fungal diseases. To identify their cognate receptors, the grapevine family of LysM receptor kinases (LysM-RKs) was annotated and their gene expression profiles were characterized. Phylogenetic analysis clearly distinguished three V. vinifera LysM-RKs (VvLYKs) located in the same clade as the Arabidopsis CHITIN ELICITOR RECEPTOR KINASE1 (AtCERK1), which mediates chitin-induced immune responses. The Arabidopsis mutant Atcerk1, impaired in chitin perception, was transformed with these three putative orthologous genes encoding VvLYK1-1, -2, or -3 to determine if they would complement the loss of AtCERK1 function. Our results provide evidence that VvLYK1-1 and VvLYK1-2, but not VvLYK1-3, functionally complement the Atcerk1 mutant by restoring chitooligosaccharide-induced MAPK activation and immune gene expression. Moreover, expression of VvLYK1-1 in Atcerk1 restored penetration resistance to the non-adapted grapevine powdery mildew (Erysiphe necator). On the whole, our results indicate that the grapevine VvLYK1-1 and VvLYK1-2 participate in chitin- and chitosan-triggered immunity and that VvLYK1-1 plays an important role in basal resistance against E. necator. es_ES
dc.description.sponsorship This work has been financially supported by ANR (PATRIC project, grant ANR-13-KBBE-0001) (to BP), the Regional Council of Bourgogne Franche-Comte (PARI grant 2016-9201AAO050S016 36 and FEDER grant BG0005888) and INRA for the funding of Justine Claverie's PhD (grants 2015-9201AAO048502578 and 29000907), by the Gatsby Charitable Foundation (to CZ), and by the Biotechnology and Biological Sciences Research Council (BBSRC) grants BB/G024936/1 (ERA-PG PRR CROP (to CZ). es_ES
dc.language Inglés es_ES
dc.publisher Blackwell Publishing es_ES
dc.relation.ispartof Plant Biotechnology Journal es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Pathogen-associated molecular pattern es_ES
dc.subject Pattern recognition receptor es_ES
dc.subject Vitis vinifera es_ES
dc.subject Immune responses es_ES
dc.subject Erysiphe necator es_ES
dc.subject Resistance es_ES
dc.title The grapevine (Vitis vinifera) LysM receptor kinases VvLYK1-1 and VvLYK1-2 mediate chitooligosaccharide-triggered immunity es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1111/pbi.13017 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FEDER//BG0005888/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ANR//ANR-13-KBBE-0001/FR/Application of PAMP Triggered Immunity in Crops/PATRIC/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UKRI//BB%2FG024936%2F1/GB/Pattern recognition receptors: discovery function and application in crops for durable disease control/PRR CROP/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/INRA//2015-9201AAO048502578/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/INRA//29000907/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Brule, D.; Villano, C.; Davies, L.; Trda, L.; Clavierie, J.; Heloir, M.; Chiltz, A.... (2018). The grapevine (Vitis vinifera) LysM receptor kinases VvLYK1-1 and VvLYK1-2 mediate chitooligosaccharide-triggered immunity. Plant Biotechnology Journal. 17(4):812-825. https://doi.org/10.1111/pbi.13017 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1111/pbi.13017 es_ES
dc.description.upvformatpinicio 812 es_ES
dc.description.upvformatpfin 825 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.description.issue 4 es_ES
dc.identifier.pmid 30256508 es_ES
dc.identifier.pmcid PMC6419575 es_ES
dc.relation.pasarela S\382358 es_ES
dc.contributor.funder Gatsby Charitable Foundation es_ES
dc.contributor.funder UK Research and Innovation es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Agence Nationale de la Recherche, Francia es_ES
dc.contributor.funder Institut National de la Recherche Agronomique, Francia es_ES
dc.contributor.funder Biotechnology and Biological Sciences Research Council, Reino Unido es_ES
dc.description.references Akamatsu, A., Wong, H. L., Fujiwara, M., Okuda, J., Nishide, K., Uno, K., … Shimamoto, K. (2013). An OsCEBiP/OsCERK1-OsRacGEF1-OsRac1 Module Is an Essential Early Component of Chitin-Induced Rice Immunity. Cell Host & Microbe, 13(4), 465-476. doi:10.1016/j.chom.2013.03.007 es_ES
dc.description.references Albert, P., Miya, A., Hiratsuka, K., Kawakami, N., & Shibuya, N. (2006). A high-throughput evaluation system for Arabidopsis mutants for defense signaling. Plant Biotechnology, 23(5), 459-466. doi:10.5511/plantbiotechnology.23.459 es_ES
dc.description.references Ao, Y., Li, Z., Feng, D., Xiong, F., Liu, J., Li, J.-F., … Wang, H.-B. (2014). OsCERK1 and OsRLCK176 play important roles in peptidoglycan and chitin signaling in rice innate immunity. The Plant Journal, 80(6), 1072-1084. doi:10.1111/tpj.12710 es_ES
dc.description.references Aziz, A., Poinssot, B., Daire, X., Adrian, M., Bézier, A., Lambert, B., … Pugin, A. (2003). Laminarin Elicits Defense Responses in Grapevine and Induces Protection Against Botrytis cinerea and Plasmopara viticola. Molecular Plant-Microbe Interactions®, 16(12), 1118-1128. doi:10.1094/mpmi.2003.16.12.1118 es_ES
dc.description.references Aziz, A., Trotel-Aziz, P., Dhuicq, L., Jeandet, P., Couderchet, M., & Vernet, G. (2006). Chitosan Oligomers and Copper Sulfate Induce Grapevine Defense Reactions and Resistance to Gray Mold and Downy Mildew. Phytopathology®, 96(11), 1188-1194. doi:10.1094/phyto-96-1188 es_ES
dc.description.references Bleckmann, A., Weidtkamp-Peters, S., Seidel, C. A. M., & Simon, R. (2009). Stem Cell Signaling in Arabidopsis Requires CRN to Localize CLV2 to the Plasma Membrane. Plant Physiology, 152(1), 166-176. doi:10.1104/pp.109.149930 es_ES
dc.description.references Boller, T., & Felix, G. (2009). A Renaissance of Elicitors: Perception of Microbe-Associated Molecular Patterns and Danger Signals by Pattern-Recognition Receptors. Annual Review of Plant Biology, 60(1), 379-406. doi:10.1146/annurev.arplant.57.032905.105346 es_ES
dc.description.references Boutrot, F., & Zipfel, C. (2017). Function, Discovery, and Exploitation of Plant Pattern Recognition Receptors for Broad-Spectrum Disease Resistance. Annual Review of Phytopathology, 55(1), 257-286. doi:10.1146/annurev-phyto-080614-120106 es_ES
dc.description.references Brandizzi, F., Irons, S. L., Johansen, J., Kotzer, A., & Neumann, U. (2004). GFP is the way to glow: bioimaging of the plant endomembrane system. Journal of Microscopy, 214(2), 138-158. doi:10.1111/j.0022-2720.2004.01334.x es_ES
dc.description.references Van den Burg, H. A., Harrison, S. J., Joosten, M. H. A. J., Vervoort, J., & de Wit, P. J. G. M. (2006). Cladosporium fulvum Avr4 Protects Fungal Cell Walls Against Hydrolysis by Plant Chitinases Accumulating During Infection. Molecular Plant-Microbe Interactions®, 19(12), 1420-1430. doi:10.1094/mpmi-19-1420 es_ES
dc.description.references Cabrera, J. C., Messiaen, J., Cambier, P., & Van Cutsem, P. (2006). Size, acetylation and concentration of chitooligosaccharide elicitors determine the switch from defence involving PAL activation to cell death and water peroxide production in Arabidopsis cell suspensions. Physiologia Plantarum, 127(1), 44-56. doi:10.1111/j.1399-3054.2006.00677.x es_ES
dc.description.references Cao, Y., Liang, Y., Tanaka, K., Nguyen, C. T., Jedrzejczak, R. P., Joachimiak, A., & Stacey, G. (2014). The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin-induced complex with related kinase CERK1. eLife, 3. doi:10.7554/elife.03766 es_ES
dc.description.references Clough, S. J., & Bent, A. F. (1998). Floral dip: a simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana. The Plant Journal, 16(6), 735-743. doi:10.1046/j.1365-313x.1998.00343.x es_ES
dc.description.references Czechowski, T., Stitt, M., Altmann, T., Udvardi, M. K., & Scheible, W.-R. (2005). Genome-Wide Identification and Testing of Superior Reference Genes for Transcript Normalization in Arabidopsis. Plant Physiology, 139(1), 5-17. doi:10.1104/pp.105.063743 es_ES
dc.description.references Dodds, P. N., & Rathjen, J. P. (2010). Plant immunity: towards an integrated view of plant–pathogen interactions. Nature Reviews Genetics, 11(8), 539-548. doi:10.1038/nrg2812 es_ES
dc.description.references Donald, T. M., Pellerone, F., Adam-Blondon, A.-F., Bouquet, A., Thomas, M. R., & Dry, I. B. (2002). Identification of resistance gene analogs linked to a powdery mildew resistance locus in grapevine. Theoretical and Applied Genetics, 104(4), 610-618. doi:10.1007/s00122-001-0768-1 es_ES
dc.description.references Dubreuil-Maurizi, C., Trouvelot, S., Frettinger, P., Pugin, A., Wendehenne, D., & Poinssot, B. (2010). β-Aminobutyric Acid Primes an NADPH Oxidase–Dependent Reactive Oxygen Species Production During Grapevine-Triggered Immunity. Molecular Plant-Microbe Interactions®, 23(8), 1012-1021. doi:10.1094/mpmi-23-8-1012 es_ES
dc.description.references Van Esse, H. P., Bolton, M. D., Stergiopoulos, I., de Wit, P. J. G. M., & Thomma, B. P. H. J. (2007). The Chitin-Binding Cladosporium fulvum Effector Protein Avr4 Is a Virulence Factor. Molecular Plant-Microbe Interactions®, 20(9), 1092-1101. doi:10.1094/mpmi-20-9-1092 es_ES
dc.description.references Van Esse, H. P., van’t Klooster, J. W., Bolton, M. D., Yadeta, K. A., van Baarlen, P., Boeren, S., … Thomma, B. P. H. J. (2008). The Cladosporium fulvum Virulence Protein Avr2 Inhibits Host Proteases Required for Basal Defense. The Plant Cell, 20(7), 1948-1963. doi:10.1105/tpc.108.059394 es_ES
dc.description.references Feechan, A., Jermakow, A. M., Ivancevic, A., Godfrey, D., Pak, H., Panstruga, R., & Dry, I. B. (2013). Host Cell Entry of Powdery Mildew Is Correlated with Endosomal Transport of Antagonistically Acting VvPEN1 and VvMLO to the Papilla. Molecular Plant-Microbe Interactions®, 26(10), 1138-1150. doi:10.1094/mpmi-04-13-0091-r es_ES
dc.description.references Felix, G., Baureithel, K., & Boller, T. (1998). Desensitization of the Perception System for Chitin Fragments in Tomato Cells. Plant Physiology, 117(2), 643-650. doi:10.1104/pp.117.2.643 es_ES
dc.description.references Gauthier, A., Trouvelot, S., Kelloniemi, J., Frettinger, P., Wendehenne, D., Daire, X., … Poinssot, B. (2014). The Sulfated Laminarin Triggers a Stress Transcriptome before Priming the SA- and ROS-Dependent Defenses during Grapevine’s Induced Resistance against Plasmopara viticola. PLoS ONE, 9(2), e88145. doi:10.1371/journal.pone.0088145 es_ES
dc.description.references Gimenez-Ibanez, S., Ntoukakis, V., & Rathjen, J. P. (2009). The LysM receptor kinase CERK1 mediates bacterial perception in Arabidopsis. Plant Signaling & Behavior, 4(6), 539-541. doi:10.4161/psb.4.6.8697 es_ES
dc.description.references Gleave, A. P. (1992). A versatile binary vector system with a T-DNA organisational structure conducive to efficient integration of cloned DNA into the plant genome. Plant Molecular Biology, 20(6), 1203-1207. doi:10.1007/bf00028910 es_ES
dc.description.references Gong, B.-Q., Xue, J., Zhang, N., Xu, L., Yao, X., Yang, Q.-J., … Li, J.-F. (2017). Rice Chitin Receptor OsCEBiP Is Not a Transmembrane Protein but Targets the Plasma Membrane via a GPI Anchor. Molecular Plant, 10(5), 767-770. doi:10.1016/j.molp.2016.12.005 es_ES
dc.description.references Gubaeva, E., Gubaev, A., Melcher, R. L. J., Cord-Landwehr, S., Singh, R., El Gueddari, N. E., & Moerschbacher, B. M. (2018). ‘Slipped Sandwich’ Model for Chitin and Chitosan Perception in Arabidopsis. Molecular Plant-Microbe Interactions®, 31(11), 1145-1153. doi:10.1094/mpmi-04-18-0098-r es_ES
dc.description.references Gust, A. A., Willmann, R., Desaki, Y., Grabherr, H. M., & Nürnberger, T. (2012). Plant LysM proteins: modules mediating symbiosis and immunity. Trends in Plant Science, 17(8), 495-502. doi:10.1016/j.tplants.2012.04.003 es_ES
dc.description.references Hayafune, M., Berisio, R., Marchetti, R., Silipo, A., Kayama, M., Desaki, Y., … Shibuya, N. (2014). Chitin-induced activation of immune signaling by the rice receptor CEBiP relies on a unique sandwich-type dimerization. Proceedings of the National Academy of Sciences, 111(3), E404-E413. doi:10.1073/pnas.1312099111 es_ES
dc.description.references Heath, M. C. (2000). Nonhost resistance and nonspecific plant defenses. Current Opinion in Plant Biology, 3(4), 315-319. doi:10.1016/s1369-5266(00)00087-x es_ES
dc.description.references (2007). The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature, 449(7161), 463-467. doi:10.1038/nature06148 es_ES
dc.description.references Jones, J. D. G., & Dangl, J. L. (2006). The plant immune system. Nature, 444(7117), 323-329. doi:10.1038/nature05286 es_ES
dc.description.references Kaku, H., Nishizawa, Y., Ishii-Minami, N., Akimoto-Tomiyama, C., Dohmae, N., Takio, K., … Shibuya, N. (2006). Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proceedings of the National Academy of Sciences, 103(29), 11086-11091. doi:10.1073/pnas.0508882103 es_ES
dc.description.references Karimi, M., Inzé, D., & Depicker, A. (2002). GATEWAY™ vectors for Agrobacterium-mediated plant transformation. Trends in Plant Science, 7(5), 193-195. doi:10.1016/s1360-1385(02)02251-3 es_ES
dc.description.references Kelloniemi, J., Trouvelot, S., Héloir, M.-C., Simon, A., Dalmais, B., Frettinger, P., … Viaud, M. (2015). Analysis of the Molecular Dialogue Between Gray Mold (Botrytis cinerea) and Grapevine (Vitis vinifera) Reveals a Clear Shift in Defense Mechanisms During Berry Ripening. Molecular Plant-Microbe Interactions®, 28(11), 1167-1180. doi:10.1094/mpmi-02-15-0039-r es_ES
dc.description.references Kim Khiook, I. L., Schneider, C., Heloir, M.-C., Bois, B., Daire, X., Adrian, M., & Trouvelot, S. (2013). Image analysis methods for assessment of H2O2 production and Plasmopara viticola development in grapevine leaves: Application to the evaluation of resistance to downy mildew. Journal of Microbiological Methods, 95(2), 235-244. doi:10.1016/j.mimet.2013.08.012 es_ES
dc.description.references Koch, E., & Slusarenko, A. (1990). Arabidopsis is susceptible to infection by a downy mildew fungus. The Plant Cell, 2(5), 437-445. doi:10.1105/tpc.2.5.437 es_ES
dc.description.references Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution, 33(7), 1870-1874. doi:10.1093/molbev/msw054 es_ES
dc.description.references Lacombe, S., Rougon-Cardoso, A., Sherwood, E., Peeters, N., Dahlbeck, D., van Esse, H. P., … Zipfel, C. (2010). Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance. Nature Biotechnology, 28(4), 365-369. doi:10.1038/nbt.1613 es_ES
dc.description.references Lee, S., Whitaker, V. M., & Hutton, S. F. (2016). Mini Review: Potential Applications of Non-host Resistance for Crop Improvement. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.00997 es_ES
dc.description.references Liu, T., Liu, Z., Song, C., Hu, Y., Han, Z., She, J., … Chai, J. (2012). Chitin-Induced Dimerization Activates a Plant Immune Receptor. Science, 336(6085), 1160-1164. doi:10.1126/science.1218867 es_ES
dc.description.references Liu, S., Wang, J., Han, Z., Gong, X., Zhang, H., & Chai, J. (2016). Molecular Mechanism for Fungal Cell Wall Recognition by Rice Chitin Receptor OsCEBiP. Structure, 24(7), 1192-1200. doi:10.1016/j.str.2016.04.014 es_ES
dc.description.references Livak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25(4), 402-408. doi:10.1006/meth.2001.1262 es_ES
dc.description.references Lloyd, S. R., Schoonbeek, H., Trick, M., Zipfel, C., & Ridout, C. J. (2014). Methods to Study PAMP-Triggered Immunity in Brassica Species. Molecular Plant-Microbe Interactions®, 27(3), 286-295. doi:10.1094/mpmi-05-13-0154-fi es_ES
dc.description.references Lu, F., Wang, H., Wang, S., Jiang, W., Shan, C., Li, B., … Sun, W. (2015). Enhancement of innate immune system in monocot rice by transferring the dicotyledonous elongation factor Tu receptor EFR. Journal of Integrative Plant Biology, 57(7), 641-652. doi:10.1111/jipb.12306 es_ES
dc.description.references Mentlak, T. A., Kombrink, A., Shinya, T., Ryder, L. S., Otomo, I., Saitoh, H., … Talbot, N. J. (2012). Effector-Mediated Suppression of Chitin-Triggered Immunity by Magnaporthe oryzae Is Necessary for Rice Blast Disease. The Plant Cell, 24(1), 322-335. doi:10.1105/tpc.111.092957 es_ES
dc.description.references Miya, A., Albert, P., Shinya, T., Desaki, Y., Ichimura, K., Shirasu, K., … Shibuya, N. (2007). CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proceedings of the National Academy of Sciences, 104(49), 19613-19618. doi:10.1073/pnas.0705147104 es_ES
dc.description.references Paparella, C., Savatin, D. V., Marti, L., De Lorenzo, G., & Ferrari, S. (2014). The Arabidopsis LYSIN MOTIF-CONTAINING RECEPTOR-LIKE KINASE3 Regulates the Cross Talk between Immunity and Abscisic Acid Responses. Plant Physiology, 165(1), 262-276. doi:10.1104/pp.113.233759 es_ES
dc.description.references Petutschnig, E. K., Jones, A. M. E., Serazetdinova, L., Lipka, U., & Lipka, V. (2010). The Lysin Motif Receptor-like Kinase (LysM-RLK) CERK1 Is a Major Chitin-binding Protein inArabidopsis thalianaand Subject to Chitin-induced Phosphorylation. Journal of Biological Chemistry, 285(37), 28902-28911. doi:10.1074/jbc.m110.116657 es_ES
dc.description.references Pietraszewska-Bogiel, A., Lefebvre, B., Koini, M. A., Klaus-Heisen, D., Takken, F. L. W., Geurts, R., … Gadella, T. W. J. (2013). Interaction of Medicago truncatula Lysin Motif Receptor-Like Kinases, NFP and LYK3, Produced in Nicotiana benthamiana Induces Defence-Like Responses. PLoS ONE, 8(6), e65055. doi:10.1371/journal.pone.0065055 es_ES
dc.description.references Piquerez, S. J. M., Harvey, S. E., Beynon, J. L., & Ntoukakis, V. (2014). Improving crop disease resistance: lessons from research on Arabidopsis and tomato. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00671 es_ES
dc.description.references Poinssot, B., Vandelle, E., Bentéjac, M., Adrian, M., Levis, C., Brygoo, Y., … Pugin, A. (2003). The Endopolygalacturonase 1 from Botrytis cinerea Activates Grapevine Defense Reactions Unrelated to Its Enzymatic Activity. Molecular Plant-Microbe Interactions®, 16(6), 553-564. doi:10.1094/mpmi.2003.16.6.553 es_ES
dc.description.references Povero, G., Loreti, E., Pucciariello, C., Santaniello, A., Di Tommaso, D., Di Tommaso, G., … Perata, P. (2011). Transcript profiling of chitosan-treated Arabidopsis seedlings. Journal of Plant Research, 124(5), 619-629. doi:10.1007/s10265-010-0399-1 es_ES
dc.description.references Qiu, W., Feechan, A., & Dry, I. (2015). Current understanding of grapevine defense mechanisms against the biotrophic fungus (Erysiphe necator), the causal agent of powdery mildew disease. Horticulture Research, 2(1). doi:10.1038/hortres.2015.20 es_ES
dc.description.references Reid, K. E., Olsson, N., Schlosser, J., Peng, F., & Lund, S. T. (2006). BMC Plant Biology, 6(1), 27. doi:10.1186/1471-2229-6-27 es_ES
dc.description.references Schoonbeek, H., Wang, H.-H., Stefanato, F. L., Craze, M., Bowden, S., Wallington, E., … Ridout, C. J. (2015). Arabidopsis EF-Tu receptor enhances bacterial disease resistance in transgenic wheat. New Phytologist, 206(2), 606-613. doi:10.1111/nph.13356 es_ES
dc.description.references Segonzac, C., Feike, D., Gimenez-Ibanez, S., Hann, D. R., Zipfel, C., & Rathjen, J. P. (2011). Hierarchy and Roles of Pathogen-Associated Molecular Pattern-Induced Responses in Nicotiana benthamiana. Plant Physiology, 156(2), 687-699. doi:10.1104/pp.110.171249 es_ES
dc.description.references Shimizu, T., Nakano, T., Takamizawa, D., Desaki, Y., Ishii-Minami, N., Nishizawa, Y., … Shibuya, N. (2010). Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. The Plant Journal, 64(2), 204-214. doi:10.1111/j.1365-313x.2010.04324.x es_ES
dc.description.references Shinya, T., Nakagawa, T., Kaku, H., & Shibuya, N. (2015). Chitin-mediated plant–fungal interactions: catching, hiding and handshaking. Current Opinion in Plant Biology, 26, 64-71. doi:10.1016/j.pbi.2015.05.032 es_ES
dc.description.references Steimetz, E., Trouvelot, S., Gindro, K., Bordier, A., Poinssot, B., Adrian, M., & Daire, X. (2012). Influence of leaf age on induced resistance in grapevine against Plasmopara viticola. Physiological and Molecular Plant Pathology, 79, 89-96. doi:10.1016/j.pmpp.2012.05.004 es_ES
dc.description.references TANABE, S., OKADA, M., JIKUMARU, Y., YAMANE, H., KAKU, H., SHIBUYA, N., & MINAMI, E. (2006). Induction of Resistance against Rice Blast Fungus in Rice Plants Treated with a Potent Elicitor,N-Acetylchitooligosaccharide. Bioscience, Biotechnology, and Biochemistry, 70(7), 1599-1605. doi:10.1271/bbb.50677 es_ES
dc.description.references Trdá, L., Fernandez, O., Boutrot, F., Héloir, M.-C., Kelloniemi, J., Daire, X., … Poinssot, B. (2013). The grapevine flagellin receptor VvFLS2 differentially recognizes flagellin-derived epitopes from the endophytic growth-promoting bacteriumBurkholderia phytofirmansand plant pathogenic bacteria. New Phytologist, 201(4), 1371-1384. doi:10.1111/nph.12592 es_ES
dc.description.references Trdá, L., Boutrot, F., Claverie, J., Brulé, D., Dorey, S., & Poinssot, B. (2015). Perception of pathogenic or beneficial bacteria and their evasion of host immunity: pattern recognition receptors in the frontline. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00219 es_ES
dc.description.references Trouvelot, S., Héloir, M.-C., Poinssot, B., Gauthier, A., Paris, F., Guillier, C., … Adrian, M. (2014). Carbohydrates in plant immunity and plant protection: roles and potential application as foliar sprays. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00592 es_ES
dc.description.references Vandelle, E., Poinssot, B., Wendehenne, D., Bentéjac, M., & Pugin, A. (2006). Integrated Signaling Network Involving Calcium, Nitric Oxide, and Active Oxygen Species but Not Mitogen-Activated Protein Kinases in BcPG1-Elicited Grapevine Defenses. Molecular Plant-Microbe Interactions®, 19(4), 429-440. doi:10.1094/mpmi-19-0429 es_ES
dc.description.references Vander, P., Vårum, K. M., Domard, A., Eddine El Gueddari, N., & Moerschbacher, B. M. (1998). Comparison of the Ability of Partially N-Acetylated Chitosans and Chitooligosaccharides to Elicit Resistance Reactions in Wheat Leaves. Plant Physiology, 118(4), 1353-1359. doi:10.1104/pp.118.4.1353 es_ES
dc.description.references Walters, D. R., Ratsep, J., & Havis, N. D. (2013). Controlling crop diseases using induced resistance: challenges for the future. Journal of Experimental Botany, 64(5), 1263-1280. doi:10.1093/jxb/ert026 es_ES
dc.description.references Wan, J., Zhang, X.-C., Neece, D., Ramonell, K. M., Clough, S., Kim, S., … Stacey, G. (2008). A LysM Receptor-Like Kinase Plays a Critical Role in Chitin Signaling and Fungal Resistance in Arabidopsis. The Plant Cell, 20(2), 471-481. doi:10.1105/tpc.107.056754 es_ES
dc.description.references Wiesel, L., Newton, A. C., Elliott, I., Booty, D., Gilroy, E. M., Birch, P. R. J., & Hein, I. (2014). Molecular effects of resistance elicitors from biological origin and their potential for crop protection. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00655 es_ES
dc.description.references Williams, S. J., Yin, L., Foley, G., Casey, L. W., Outram, M. A., Ericsson, D. J., … Kobe, B. (2016). Structure and Function of the TIR Domain from the Grape NLR Protein RPV1. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.01850 es_ES
dc.description.references Willmann, R., Lajunen, H. M., Erbs, G., Newman, M.-A., Kolb, D., Tsuda, K., … Nurnberger, T. (2011). Arabidopsis lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection. Proceedings of the National Academy of Sciences, 108(49), 19824-19829. doi:10.1073/pnas.1112862108 es_ES
dc.description.references Xu, J., Xie, J., Yan, C., Zou, X., Ren, D., & Zhang, S. (2013). A chemical genetic approach demonstrates that MPK3/MPK6 activation and NADPH oxidase-mediated oxidative burst are two independent signaling events in plant immunity. The Plant Journal, 77(2), 222-234. doi:10.1111/tpj.12382 es_ES
dc.description.references Yamaguchi, K., Yamada, K., Ishikawa, K., Yoshimura, S., Hayashi, N., Uchihashi, K., … Kawasaki, T. (2013). A Receptor-like Cytoplasmic Kinase Targeted by a Plant Pathogen Effector Is Directly Phosphorylated by the Chitin Receptor and Mediates Rice Immunity. Cell Host & Microbe, 13(3), 347-357. doi:10.1016/j.chom.2013.02.007 es_ES
dc.description.references Yin, H., Du, Y., & Dong, Z. (2016). Chitin Oligosaccharide and Chitosan Oligosaccharide: Two Similar but Different Plant Elicitors. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.00522 es_ES
dc.description.references Yu, X., Feng, B., He, P., & Shan, L. (2017). From Chaos to Harmony: Responses and Signaling upon Microbial Pattern Recognition. Annual Review of Phytopathology, 55(1), 109-137. doi:10.1146/annurev-phyto-080516-035649 es_ES
dc.description.references Zeng, L., Velásquez, A. C., Munkvold, K. R., Zhang, J., & Martin, G. B. (2011). A tomato LysM receptor-like kinase promotes immunity and its kinase activity is inhibited by AvrPtoB. The Plant Journal, 69(1), 92-103. doi:10.1111/j.1365-313x.2011.04773.x es_ES
dc.description.references Zhang, X.-C., Cannon, S. B., & Stacey, G. (2009). Evolutionary genomics of LysM genes in land plants. BMC Evolutionary Biology, 9(1), 183. doi:10.1186/1471-2148-9-183 es_ES
dc.description.references Zipfel, C., Kunze, G., Chinchilla, D., Caniard, A., Jones, J. D. G., Boller, T., & Felix, G. (2006). Perception of the Bacterial PAMP EF-Tu by the Receptor EFR Restricts Agrobacterium-Mediated Transformation. Cell, 125(4), 749-760. doi:10.1016/j.cell.2006.03.037 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem