- -

Photoassisted methanation using Cu2O nanoparticles supported on graphene as a photocatalyst

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Photoassisted methanation using Cu2O nanoparticles supported on graphene as a photocatalyst

Show full item record

Mateo-Mateo, D.; Albero-Sancho, J.; García Gómez, H. (2017). Photoassisted methanation using Cu2O nanoparticles supported on graphene as a photocatalyst. Energy & Environmental Science. 10(11):2392-2400. https://doi.org/10.1039/c7ee02287e

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/149934

Files in this item

Item Metadata

Title: Photoassisted methanation using Cu2O nanoparticles supported on graphene as a photocatalyst
Author: Mateo-Mateo, Diego Albero-Sancho, Josep García Gómez, Hermenegildo
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Química - Departament de Química
Issued date:
Abstract:
[EN] Photoassisted CO2 methanation can be carried out efficiently at 250 degrees C using Cu2O nanoparticles supported on few layer graphene (Cu2O/G) as a photocatalyst. The Cu2O/G photocatalyst has been prepared by chemical ...[+]
Subjects: Visible-Light photocatalyst , Of-The-Art , Carbon-Dioxide , CO2 Reduction , Hydrocarbon fuels , Solar Fuels , Conversion , Generation , State , Water
Copyrigths: Reserva de todos los derechos
Source:
Energy & Environmental Science. (issn: 1754-5692 )
DOI: 10.1039/c7ee02287e
Publisher:
The Royal Society of Chemistry
Publisher version: https://doi.org/10.1039/c7ee02287e
Project ID:
MINECO/CTQ2015-69563-CO2-R1
GENERALITAT VALENCIANA/PROMETEO/2013/014
Thanks:
Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa, grapas, and CTQ2015-69563-CO2-R1) and by the Generalitat Valenciana (Prometeo 2013014) is gratefully acknowledged. J. A. thanks the ...[+]
Type: Artículo

References

Yuan, L., & Xu, Y.-J. (2015). Photocatalytic conversion of CO2 into value-added and renewable fuels. Applied Surface Science, 342, 154-167. doi:10.1016/j.apsusc.2015.03.050

Ganesh, I. (2015). Solar fuels vis-à-vis electricity generation from sunlight: The current state-of-the-art (a review). Renewable and Sustainable Energy Reviews, 44, 904-932. doi:10.1016/j.rser.2015.01.019

Tu, W., Zhou, Y., & Zou, Z. (2014). Photocatalytic Conversion of CO2into Renewable Hydrocarbon Fuels: State-of-the-Art Accomplishment, Challenges, and Prospects. Advanced Materials, 26(27), 4607-4626. doi:10.1002/adma.201400087 [+]
Yuan, L., & Xu, Y.-J. (2015). Photocatalytic conversion of CO2 into value-added and renewable fuels. Applied Surface Science, 342, 154-167. doi:10.1016/j.apsusc.2015.03.050

Ganesh, I. (2015). Solar fuels vis-à-vis electricity generation from sunlight: The current state-of-the-art (a review). Renewable and Sustainable Energy Reviews, 44, 904-932. doi:10.1016/j.rser.2015.01.019

Tu, W., Zhou, Y., & Zou, Z. (2014). Photocatalytic Conversion of CO2into Renewable Hydrocarbon Fuels: State-of-the-Art Accomplishment, Challenges, and Prospects. Advanced Materials, 26(27), 4607-4626. doi:10.1002/adma.201400087

Corma, A., & Garcia, H. (2013). Photocatalytic reduction of CO2 for fuel production: Possibilities and challenges. Journal of Catalysis, 308, 168-175. doi:10.1016/j.jcat.2013.06.008

Y. Izumi , in Advances in CO2 Capture, Sequestration, and Conversion, American Chemical Society, 2015, ch. 1, vol. 1194, pp. 1–46

INOUE, T., FUJISHIMA, A., KONISHI, S., & HONDA, K. (1979). Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature, 277(5698), 637-638. doi:10.1038/277637a0

J. Albero and H.García, in Heterogeneous Photocatalysis: From Fundamentals to Green Applications, ed. J. C. Colmenares and Y.-J. Xu, Springer-Verlag Berlin Heidelberg, 1 edn, 2016, ch. 1, p. VIII, 41610.1007/978-3-662-48719-8

Ozcan, O., Yukruk, F., Akkaya, E. U., & Uner, D. (2007). Dye sensitized CO2 reduction over pure and platinized TiO2. Topics in Catalysis, 44(4), 523-528. doi:10.1007/s11244-006-0100-z

Gonell, F., Puga, A. V., Julián-López, B., García, H., & Corma, A. (2016). Copper-doped titania photocatalysts for simultaneous reduction of CO2 and production of H2 from aqueous sulfide. Applied Catalysis B: Environmental, 180, 263-270. doi:10.1016/j.apcatb.2015.06.019

Neaţu, Ş., Maciá-Agulló, J. A., Concepción, P., & Garcia, H. (2014). Gold–Copper Nanoalloys Supported on TiO2 as Photocatalysts for CO2 Reduction by Water. Journal of the American Chemical Society, 136(45), 15969-15976. doi:10.1021/ja506433k

Xie, X., Kretschmer, K., & Wang, G. (2015). Advances in graphene-based semiconductor photocatalysts for solar energy conversion: fundamentals and materials engineering. Nanoscale, 7(32), 13278-13292. doi:10.1039/c5nr03338a

Lavorato, C., Primo, A., Molinari, R., & Garcia, H. (2013). N-Doped Graphene Derived from Biomass as a Visible-Light Photocatalyst for Hydrogen Generation from Water/Methanol Mixtures. Chemistry - A European Journal, 20(1), 187-194. doi:10.1002/chem.201303689

Kumar, P., Mungse, H. P., Khatri, O. P., & Jain, S. L. (2015). Nitrogen-doped graphene-supported copper complex: a novel photocatalyst for CO2 reduction under visible light irradiation. RSC Advances, 5(68), 54929-54935. doi:10.1039/c5ra05319f

Latorre-Sánchez, M., Esteve-Adell, I., Primo, A., & García, H. (2015). Innovative preparation of MoS2–graphene heterostructures based on alginate containing (NH4)2MoS4 and their photocatalytic activity for H2 generation. Carbon, 81, 587-596. doi:10.1016/j.carbon.2014.09.093

An, X., Li, K., & Tang, J. (2014). Cu2O/Reduced Graphene Oxide Composites for the Photocatalytic Conversion of CO2. ChemSusChem, 7(4), 1086-1093. doi:10.1002/cssc.201301194

Xiong, Z., Luo, Y., Zhao, Y., Zhang, J., Zheng, C., & Wu, J. C. S. (2016). Synthesis, characterization and enhanced photocatalytic CO2 reduction activity of graphene supported TiO2 nanocrystals with coexposed {001} and {101} facets. Physical Chemistry Chemical Physics, 18(19), 13186-13195. doi:10.1039/c5cp07854g

Xiang, Q., Cheng, B., & Yu, J. (2015). Graphene-Based Photocatalysts for Solar-Fuel Generation. Angewandte Chemie International Edition, 54(39), 11350-11366. doi:10.1002/anie.201411096

Li, F., Zhang, L., Tong, J., Liu, Y., Xu, S., Cao, Y., & Cao, S. (2016). Photocatalytic CO2 conversion to methanol by Cu2O/graphene/TNA heterostructure catalyst in a visible-light-driven dual-chamber reactor. Nano Energy, 27, 320-329. doi:10.1016/j.nanoen.2016.06.056

Shown, I., Hsu, H.-C., Chang, Y.-C., Lin, C.-H., Roy, P. K., Ganguly, A., … Chen, K.-H. (2014). Highly Efficient Visible Light Photocatalytic Reduction of CO2 to Hydrocarbon Fuels by Cu-Nanoparticle Decorated Graphene Oxide. Nano Letters, 14(11), 6097-6103. doi:10.1021/nl503609v

Lum, Y., Kwon, Y., Lobaccaro, P., Chen, L., Clark, E. L., Bell, A. T., & Ager, J. W. (2015). Trace Levels of Copper in Carbon Materials Show Significant Electrochemical CO2 Reduction Activity. ACS Catalysis, 6(1), 202-209. doi:10.1021/acscatal.5b02399

Zou, J.-P., Wu, D.-D., Luo, J., Xing, Q.-J., Luo, X.-B., Dong, W.-H., … Suib, S. L. (2016). A Strategy for One-Pot Conversion of Organic Pollutants into Useful Hydrocarbons through Coupling Photodegradation of MB with Photoreduction of CO2. ACS Catalysis, 6(10), 6861-6867. doi:10.1021/acscatal.6b01729

Ong, W.-J., Tan, L.-L., Chai, S.-P., Yong, S.-T., & Mohamed, A. R. (2015). Surface charge modification via protonation of graphitic carbon nitride (g-C3N4) for electrostatic self-assembly construction of 2D/2D reduced graphene oxide (rGO)/g-C3N4 nanostructures toward enhanced photocatalytic reduction of carbon dioxide to methane. Nano Energy, 13, 757-770. doi:10.1016/j.nanoen.2015.03.014

Lavorato, C., Primo, A., Molinari, R., & García, H. (2014). Natural Alginate as a Graphene Precursor and Template in the Synthesis of Nanoparticulate Ceria/Graphene Water Oxidation Photocatalysts. ACS Catalysis, 4(2), 497-504. doi:10.1021/cs401068m

Primo, A., Esteve-Adell, I., Blandez, J. F., Dhakshinamoorthy, A., Álvaro, M., Candu, N., … García, H. (2015). High catalytic activity of oriented 2.0.0 copper(I) oxide grown on graphene film. Nature Communications, 6(1). doi:10.1038/ncomms9561

Trandafir, M.-M., Florea, M., Neaţu, F., Primo, A., Parvulescu, V. I., & García, H. (2016). Graphene from Alginate Pyrolysis as a Metal-Free Catalyst for Hydrogenation of Nitro Compounds. ChemSusChem, 9(13), 1565-1569. doi:10.1002/cssc.201600197

Li, K., Peng, B., & Peng, T. (2016). Recent Advances in Heterogeneous Photocatalytic CO2 Conversion to Solar Fuels. ACS Catalysis, 6(11), 7485-7527. doi:10.1021/acscatal.6b02089

White, J. L., Baruch, M. F., Pander, J. E., Hu, Y., Fortmeyer, I. C., Park, J. E., … Bocarsly, A. B. (2015). Light-Driven Heterogeneous Reduction of Carbon Dioxide: Photocatalysts and Photoelectrodes. Chemical Reviews, 115(23), 12888-12935. doi:10.1021/acs.chemrev.5b00370

Puga, A. V. (2016). Light-Promoted Hydrogenation of Carbon Dioxide—An Overview. Topics in Catalysis, 59(15-16), 1268-1278. doi:10.1007/s11244-016-0658-z

Izumi, Y. (2013). Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond. Coordination Chemistry Reviews, 257(1), 171-186. doi:10.1016/j.ccr.2012.04.018

Marimuthu, A., Zhang, J., & Linic, S. (2013). Tuning Selectivity in Propylene Epoxidation by Plasmon Mediated Photo-Switching of Cu Oxidation State. Science, 339(6127), 1590-1593. doi:10.1126/science.1231631

Ren, J., Ouyang, S., Xu, H., Meng, X., Wang, T., Wang, D., & Ye, J. (2016). Targeting Activation of CO2and H2over Ru-Loaded Ultrathin Layered Double Hydroxides to Achieve Efficient Photothermal CO2Methanation in Flow-Type System. Advanced Energy Materials, 7(5), 1601657. doi:10.1002/aenm.201601657

Liu, L., Zhong, K., Meng, L., Van Hemelrijck, D., Wang, L., & Glorieux, C. (2016). Temperature-sensitive photoluminescent CdSe-ZnS polymer composite film for lock-in photothermal characterization. Journal of Applied Physics, 119(22), 224902. doi:10.1063/1.4953591

Mateo, D., Esteve-Adell, I., Albero, J., Primo, A., & García, H. (2017). Oriented 2.0.0 Cu2O nanoplatelets supported on few-layers graphene as efficient visible light photocatalyst for overall water splitting. Applied Catalysis B: Environmental, 201, 582-590. doi:10.1016/j.apcatb.2016.08.033

Liu, X., Li, Z., Zhao, W., Zhao, C., Wang, Y., & Lin, Z. (2015). A facile route to the synthesis of reduced graphene oxide-wrapped octahedral Cu2O with enhanced photocatalytic and photovoltaic performance. Journal of Materials Chemistry A, 3(37), 19148-19154. doi:10.1039/c5ta05508c

Miao, B., Ma, S. S. K., Wang, X., Su, H., & Chan, S. H. (2016). Catalysis mechanisms of CO2 and CO methanation. Catalysis Science & Technology, 6(12), 4048-4058. doi:10.1039/c6cy00478d

[-]

This item appears in the following Collection(s)

Show full item record