- -

Photoassisted methanation using Cu2O nanoparticles supported on graphene as a photocatalyst

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Photoassisted methanation using Cu2O nanoparticles supported on graphene as a photocatalyst

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mateo-Mateo, Diego es_ES
dc.contributor.author Albero-Sancho, Josep es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.date.accessioned 2020-09-12T03:34:26Z
dc.date.available 2020-09-12T03:34:26Z
dc.date.issued 2017-11-01 es_ES
dc.identifier.issn 1754-5692 es_ES
dc.identifier.uri http://hdl.handle.net/10251/149934
dc.description.abstract [EN] Photoassisted CO2 methanation can be carried out efficiently at 250 degrees C using Cu2O nanoparticles supported on few layer graphene (Cu2O/G) as a photocatalyst. The Cu2O/G photocatalyst has been prepared by chemical reduction of a Cu salt (Cu(NO3)(2)) with ethylene glycol in the presence of defective graphene obtained from the pyrolysis of alginic acid at 900 degrees C under Ar flow. Using this photocatalyst a maximum specific CH4 formation rate of 14.93 mmol g(Cu2O)(-1) h(-1) and an apparent quantum yield of 7.84% were achieved, which are among the highest reported values for the gas-phase methanation reaction at temperatures below the Sabatier reaction temperature (4350 degrees C). It was found that the most probable reaction mechanism involves photoinduced electron transfer from the Cu2O/G photocatalyst to CO2, while evidence indicates that light-induced local temperature increase and H-2 activation are negligible. The role of the temperature in the process has been studied, the available data suggesting that heating is needed to desorb the H2O formed as the product during the methanation. The most probable reaction mechanism seems to follow a dissociative pathway involving detachment of oxygen atoms from CO2. es_ES
dc.description.sponsorship Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa, grapas, and CTQ2015-69563-CO2-R1) and by the Generalitat Valenciana (Prometeo 2013014) is gratefully acknowledged. J. A. thanks the Universitat Politecnica de Valencia for a postdoctoral scholarship. D. M. also thanks the Spanish Ministry of Science for a PhD Scholarship. es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation MINECO/CTQ2015-69563-CO2-R1 es_ES
dc.relation.ispartof Energy & Environmental Science es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Visible-Light photocatalyst es_ES
dc.subject Of-The-Art es_ES
dc.subject Carbon-Dioxide es_ES
dc.subject CO2 Reduction es_ES
dc.subject Hydrocarbon fuels es_ES
dc.subject Solar Fuels es_ES
dc.subject Conversion es_ES
dc.subject Generation es_ES
dc.subject State es_ES
dc.subject Water es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Photoassisted methanation using Cu2O nanoparticles supported on graphene as a photocatalyst es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c7ee02287e es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2013%2F014/ES/SINTESIS DE GRAFENO Y DERIVADOS COMO SENSORES O CON PROPIEDADES OPTOELECTRONICAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Mateo-Mateo, D.; Albero-Sancho, J.; García Gómez, H. (2017). Photoassisted methanation using Cu2O nanoparticles supported on graphene as a photocatalyst. Energy & Environmental Science. 10(11):2392-2400. https://doi.org/10.1039/c7ee02287e es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/c7ee02287e es_ES
dc.description.upvformatpinicio 2392 es_ES
dc.description.upvformatpfin 2400 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 11 es_ES
dc.relation.pasarela S\347918 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Yuan, L., & Xu, Y.-J. (2015). Photocatalytic conversion of CO2 into value-added and renewable fuels. Applied Surface Science, 342, 154-167. doi:10.1016/j.apsusc.2015.03.050 es_ES
dc.description.references Ganesh, I. (2015). Solar fuels vis-à-vis electricity generation from sunlight: The current state-of-the-art (a review). Renewable and Sustainable Energy Reviews, 44, 904-932. doi:10.1016/j.rser.2015.01.019 es_ES
dc.description.references Tu, W., Zhou, Y., & Zou, Z. (2014). Photocatalytic Conversion of CO2into Renewable Hydrocarbon Fuels: State-of-the-Art Accomplishment, Challenges, and Prospects. Advanced Materials, 26(27), 4607-4626. doi:10.1002/adma.201400087 es_ES
dc.description.references Corma, A., & Garcia, H. (2013). Photocatalytic reduction of CO2 for fuel production: Possibilities and challenges. Journal of Catalysis, 308, 168-175. doi:10.1016/j.jcat.2013.06.008 es_ES
dc.description.references Y. Izumi , in Advances in CO2 Capture, Sequestration, and Conversion, American Chemical Society, 2015, ch. 1, vol. 1194, pp. 1–46 es_ES
dc.description.references INOUE, T., FUJISHIMA, A., KONISHI, S., & HONDA, K. (1979). Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature, 277(5698), 637-638. doi:10.1038/277637a0 es_ES
dc.description.references J. Albero and H.García, in Heterogeneous Photocatalysis: From Fundamentals to Green Applications, ed. J. C. Colmenares and Y.-J. Xu, Springer-Verlag Berlin Heidelberg, 1 edn, 2016, ch. 1, p. VIII, 41610.1007/978-3-662-48719-8 es_ES
dc.description.references Ozcan, O., Yukruk, F., Akkaya, E. U., & Uner, D. (2007). Dye sensitized CO2 reduction over pure and platinized TiO2. Topics in Catalysis, 44(4), 523-528. doi:10.1007/s11244-006-0100-z es_ES
dc.description.references Gonell, F., Puga, A. V., Julián-López, B., García, H., & Corma, A. (2016). Copper-doped titania photocatalysts for simultaneous reduction of CO2 and production of H2 from aqueous sulfide. Applied Catalysis B: Environmental, 180, 263-270. doi:10.1016/j.apcatb.2015.06.019 es_ES
dc.description.references Neaţu, Ş., Maciá-Agulló, J. A., Concepción, P., & Garcia, H. (2014). Gold–Copper Nanoalloys Supported on TiO2 as Photocatalysts for CO2 Reduction by Water. Journal of the American Chemical Society, 136(45), 15969-15976. doi:10.1021/ja506433k es_ES
dc.description.references Xie, X., Kretschmer, K., & Wang, G. (2015). Advances in graphene-based semiconductor photocatalysts for solar energy conversion: fundamentals and materials engineering. Nanoscale, 7(32), 13278-13292. doi:10.1039/c5nr03338a es_ES
dc.description.references Lavorato, C., Primo, A., Molinari, R., & Garcia, H. (2013). N-Doped Graphene Derived from Biomass as a Visible-Light Photocatalyst for Hydrogen Generation from Water/Methanol Mixtures. Chemistry - A European Journal, 20(1), 187-194. doi:10.1002/chem.201303689 es_ES
dc.description.references Kumar, P., Mungse, H. P., Khatri, O. P., & Jain, S. L. (2015). Nitrogen-doped graphene-supported copper complex: a novel photocatalyst for CO2 reduction under visible light irradiation. RSC Advances, 5(68), 54929-54935. doi:10.1039/c5ra05319f es_ES
dc.description.references Latorre-Sánchez, M., Esteve-Adell, I., Primo, A., & García, H. (2015). Innovative preparation of MoS2–graphene heterostructures based on alginate containing (NH4)2MoS4 and their photocatalytic activity for H2 generation. Carbon, 81, 587-596. doi:10.1016/j.carbon.2014.09.093 es_ES
dc.description.references An, X., Li, K., & Tang, J. (2014). Cu2O/Reduced Graphene Oxide Composites for the Photocatalytic Conversion of CO2. ChemSusChem, 7(4), 1086-1093. doi:10.1002/cssc.201301194 es_ES
dc.description.references Xiong, Z., Luo, Y., Zhao, Y., Zhang, J., Zheng, C., & Wu, J. C. S. (2016). Synthesis, characterization and enhanced photocatalytic CO2 reduction activity of graphene supported TiO2 nanocrystals with coexposed {001} and {101} facets. Physical Chemistry Chemical Physics, 18(19), 13186-13195. doi:10.1039/c5cp07854g es_ES
dc.description.references Xiang, Q., Cheng, B., & Yu, J. (2015). Graphene-Based Photocatalysts for Solar-Fuel Generation. Angewandte Chemie International Edition, 54(39), 11350-11366. doi:10.1002/anie.201411096 es_ES
dc.description.references Li, F., Zhang, L., Tong, J., Liu, Y., Xu, S., Cao, Y., & Cao, S. (2016). Photocatalytic CO2 conversion to methanol by Cu2O/graphene/TNA heterostructure catalyst in a visible-light-driven dual-chamber reactor. Nano Energy, 27, 320-329. doi:10.1016/j.nanoen.2016.06.056 es_ES
dc.description.references Shown, I., Hsu, H.-C., Chang, Y.-C., Lin, C.-H., Roy, P. K., Ganguly, A., … Chen, K.-H. (2014). Highly Efficient Visible Light Photocatalytic Reduction of CO2 to Hydrocarbon Fuels by Cu-Nanoparticle Decorated Graphene Oxide. Nano Letters, 14(11), 6097-6103. doi:10.1021/nl503609v es_ES
dc.description.references Lum, Y., Kwon, Y., Lobaccaro, P., Chen, L., Clark, E. L., Bell, A. T., & Ager, J. W. (2015). Trace Levels of Copper in Carbon Materials Show Significant Electrochemical CO2 Reduction Activity. ACS Catalysis, 6(1), 202-209. doi:10.1021/acscatal.5b02399 es_ES
dc.description.references Zou, J.-P., Wu, D.-D., Luo, J., Xing, Q.-J., Luo, X.-B., Dong, W.-H., … Suib, S. L. (2016). A Strategy for One-Pot Conversion of Organic Pollutants into Useful Hydrocarbons through Coupling Photodegradation of MB with Photoreduction of CO2. ACS Catalysis, 6(10), 6861-6867. doi:10.1021/acscatal.6b01729 es_ES
dc.description.references Ong, W.-J., Tan, L.-L., Chai, S.-P., Yong, S.-T., & Mohamed, A. R. (2015). Surface charge modification via protonation of graphitic carbon nitride (g-C3N4) for electrostatic self-assembly construction of 2D/2D reduced graphene oxide (rGO)/g-C3N4 nanostructures toward enhanced photocatalytic reduction of carbon dioxide to methane. Nano Energy, 13, 757-770. doi:10.1016/j.nanoen.2015.03.014 es_ES
dc.description.references Lavorato, C., Primo, A., Molinari, R., & García, H. (2014). Natural Alginate as a Graphene Precursor and Template in the Synthesis of Nanoparticulate Ceria/Graphene Water Oxidation Photocatalysts. ACS Catalysis, 4(2), 497-504. doi:10.1021/cs401068m es_ES
dc.description.references Primo, A., Esteve-Adell, I., Blandez, J. F., Dhakshinamoorthy, A., Álvaro, M., Candu, N., … García, H. (2015). High catalytic activity of oriented 2.0.0 copper(I) oxide grown on graphene film. Nature Communications, 6(1). doi:10.1038/ncomms9561 es_ES
dc.description.references Trandafir, M.-M., Florea, M., Neaţu, F., Primo, A., Parvulescu, V. I., & García, H. (2016). Graphene from Alginate Pyrolysis as a Metal-Free Catalyst for Hydrogenation of Nitro Compounds. ChemSusChem, 9(13), 1565-1569. doi:10.1002/cssc.201600197 es_ES
dc.description.references Li, K., Peng, B., & Peng, T. (2016). Recent Advances in Heterogeneous Photocatalytic CO2 Conversion to Solar Fuels. ACS Catalysis, 6(11), 7485-7527. doi:10.1021/acscatal.6b02089 es_ES
dc.description.references White, J. L., Baruch, M. F., Pander, J. E., Hu, Y., Fortmeyer, I. C., Park, J. E., … Bocarsly, A. B. (2015). Light-Driven Heterogeneous Reduction of Carbon Dioxide: Photocatalysts and Photoelectrodes. Chemical Reviews, 115(23), 12888-12935. doi:10.1021/acs.chemrev.5b00370 es_ES
dc.description.references Puga, A. V. (2016). Light-Promoted Hydrogenation of Carbon Dioxide—An Overview. Topics in Catalysis, 59(15-16), 1268-1278. doi:10.1007/s11244-016-0658-z es_ES
dc.description.references Izumi, Y. (2013). Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond. Coordination Chemistry Reviews, 257(1), 171-186. doi:10.1016/j.ccr.2012.04.018 es_ES
dc.description.references Marimuthu, A., Zhang, J., & Linic, S. (2013). Tuning Selectivity in Propylene Epoxidation by Plasmon Mediated Photo-Switching of Cu Oxidation State. Science, 339(6127), 1590-1593. doi:10.1126/science.1231631 es_ES
dc.description.references Ren, J., Ouyang, S., Xu, H., Meng, X., Wang, T., Wang, D., & Ye, J. (2016). Targeting Activation of CO2and H2over Ru-Loaded Ultrathin Layered Double Hydroxides to Achieve Efficient Photothermal CO2Methanation in Flow-Type System. Advanced Energy Materials, 7(5), 1601657. doi:10.1002/aenm.201601657 es_ES
dc.description.references Liu, L., Zhong, K., Meng, L., Van Hemelrijck, D., Wang, L., & Glorieux, C. (2016). Temperature-sensitive photoluminescent CdSe-ZnS polymer composite film for lock-in photothermal characterization. Journal of Applied Physics, 119(22), 224902. doi:10.1063/1.4953591 es_ES
dc.description.references Mateo, D., Esteve-Adell, I., Albero, J., Primo, A., & García, H. (2017). Oriented 2.0.0 Cu2O nanoplatelets supported on few-layers graphene as efficient visible light photocatalyst for overall water splitting. Applied Catalysis B: Environmental, 201, 582-590. doi:10.1016/j.apcatb.2016.08.033 es_ES
dc.description.references Liu, X., Li, Z., Zhao, W., Zhao, C., Wang, Y., & Lin, Z. (2015). A facile route to the synthesis of reduced graphene oxide-wrapped octahedral Cu2O with enhanced photocatalytic and photovoltaic performance. Journal of Materials Chemistry A, 3(37), 19148-19154. doi:10.1039/c5ta05508c es_ES
dc.description.references Miao, B., Ma, S. S. K., Wang, X., Su, H., & Chan, S. H. (2016). Catalysis mechanisms of CO2 and CO methanation. Catalysis Science & Technology, 6(12), 4048-4058. doi:10.1039/c6cy00478d es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem